

Instituto Superior de Economia e Gestão

UNIVERSIDADE TÉCNICA DE LISBOA

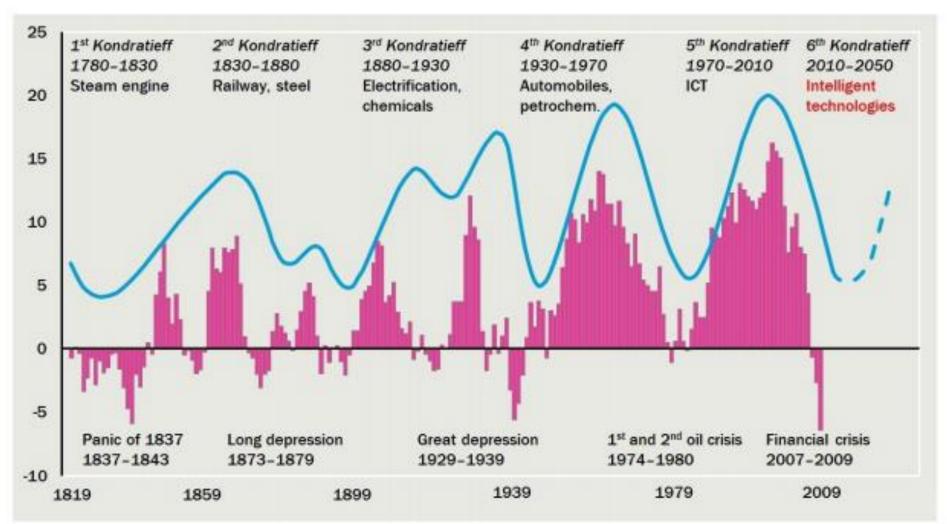
A 4ª Revolução Industrial

Rui Rosa

Aula ISEG 25-Nov-2016

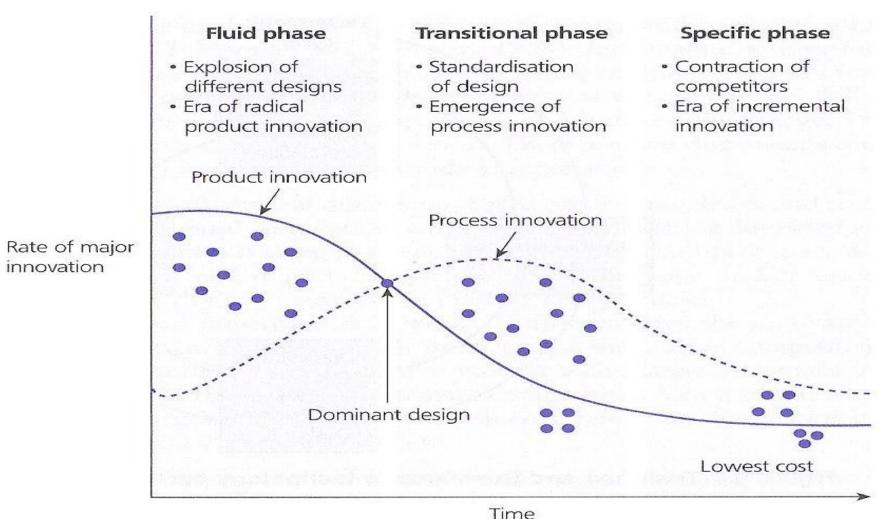
A 4ª Revolução Industrial

- 1. Como chegámos aqui
 - os pressupostos
- 2. Onde estamos
 - o fim da 3ª revolução industrial
- 3. O que estamos a fazer
 - 4ª revolução industrial
- 4. O impacto da 4º RI
 - o que muda, valor económico
- 5. O que falta e os perigos
 - investimento, maturação, energia, legislação, economia
- 6. Conclusão


Foco no desenvolvimento e impacto da tecnologia

COMO CHEGÁMOS AQUI

A HISTÓRIA REPETE-SE


Surtos de desenvolvimento

e tecnologia

Difusão, assimilação e domínio

tecnológico

Abernathy and Utterback's three phases of innovation

Source: Utterback (1994).

Combinação de fatores

TABLE II.1. Condensed summary of the Kondratiev waves

(1972)

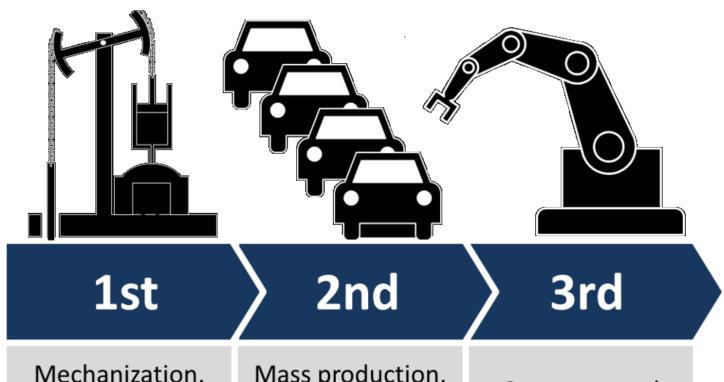

equipment Biotechnology

TABLE II.I. Cond	ensed summary of the K	condratiev waves				
Constellation of technical and organizational innovations	Examples of highly visible, technically successful, and profitable innovations (2)	'Carrier' branch and other leading branches of the economy (3)	Core input and other key inputs	Transport and communication infrastructure (5)	Managerial and organizational changes	Approx. timing of th 'upswing' (boom)
						'downswing' (crisis adjustment)
						(7)
Water-powered mechanization of industry	Arkwright's Cromford mill (1771)	Cotton spinning Iron products Water wheels	ron products Raw cotton Turnpike roads Entrepreneurs		1780s-1815	
	Henry Cort's 'puddling' process (1784)	Bleach		01	•	1815-1848
 Steam-powered mechanization of industry and transport 	Liverpool-Manchester Railway (1831)	Railways and railway equipment	Iron Coal	Railways Telegraph	Joint stock companies Subcontracting to responsible craft workers	1848-1873
	Brunel's 'Great Western' Atlantic steamship (1838)	Steam engines Machine tools Alkali industry		Steam ships		1873-1895
 Electrification of industry, transport, and the home 	Carnegie's Bessemer steel rail plant (1875)	Electrical equipment Heavy engineering Heavy chemicals Steel products	Steel Copper Metal alloys	Steel railways Steel ships Telephone	Specialized professional management systems 'Taylorism' Giant firms	1895–1918
	Edison's Pearl St. New York Electric Power Station (1882)					1918–1940
Motorization of transport, civil economy, and war	Ford's Highland Park assembly line (1913)	Automobiles Trucks Tractors, tanks	Oil Gas Synthetic materials	Radio Motorways Airports	Mass production and consumption 'Fordism'	OXFORD
	Burton process for cracking heavy oil (1913)	Diesel engines Aircraft Refineries	James america	Airlines	Hierarchies	AS TIME GOES BY
5. Computerization of entire economy	IBM 1401 and 360 series (1960s) Intel microprocessor	Computers Software Telecommunication	'Chips' (integrated circuits)	'Information Highways' (Internet)	Networks; internal, local, and global	From the Industrial Revolutions to the Information Revolution

ONDE ESTAMOS

A Infraestrutura - As inovações base

A 3ª Revolução industrial

Mechanization, water power, steam power Mass production, assembly line, electricity

Computer and automation

Fase 1 – A era das TIC (Y2K Bug)

Fase 1 − A era das TIC

Global IP Traffic & Service Adoption Drivers

Source: Cisco VNI Global IP Traffic Forecast, 2014–2019

(0.3015) Close brother its affiliates. All sietes reserved. Clare Public

Fase 2 – "Big Data Analytics"

Fase 2 – Big Data Analytics

 "We create as much information in two days now as we did from the dawn of man through 2003."

Eric Schmidt at Techonomy (2010); http://techcrunch.com/2010/08/04/schmidt-data/

- "Every day, we create 2.5 quintillion (Eb) bytes of data"
 IBM (2013); http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
- "A full 90% of all the data in the world has been generated over the last two years."

SINTEF (2013); http://www.sintef.no/home/Press-Room/Research-News/Big-Data--for-better-or-worse/

 "From now until 2020, the digital universe will about double every two years."

IDC (2012); http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf

 "nearly half of all the people in the world have access to the Internet – 46%"

Internet World Stats (2015); http://www.internetworldstats.com/

Fase 3 − A 3^a plataforma de TIC

The Third Platform is described by IDC as the nextgeneration compute platform that is accessed from mobile devices, utilizes Big Data, and is cloud based.

3RD PLATFORM

Mobile Big Data Social

CLOUD

MILLIONS OF APPS

2ND PLATFORM

LAN/Internet Client/Server

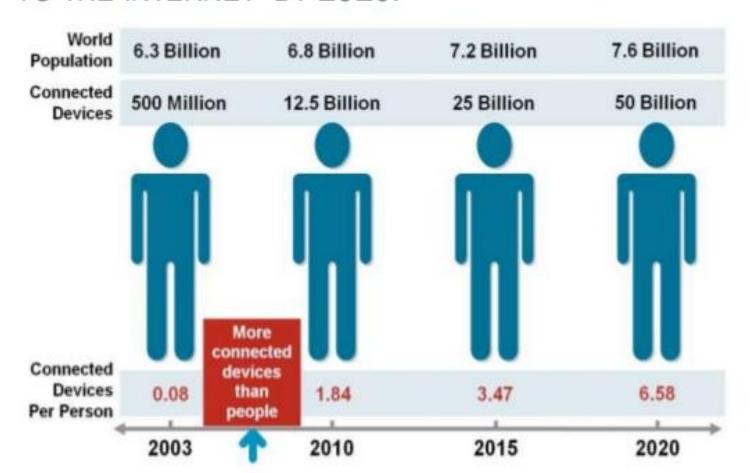
DISTRIBUTED

TENS OF THOUSANDS OF APPS

1ST PLATFORM

Mainframe, Mini Computer

MAINFRAMES


THOUSANDS OF APPS

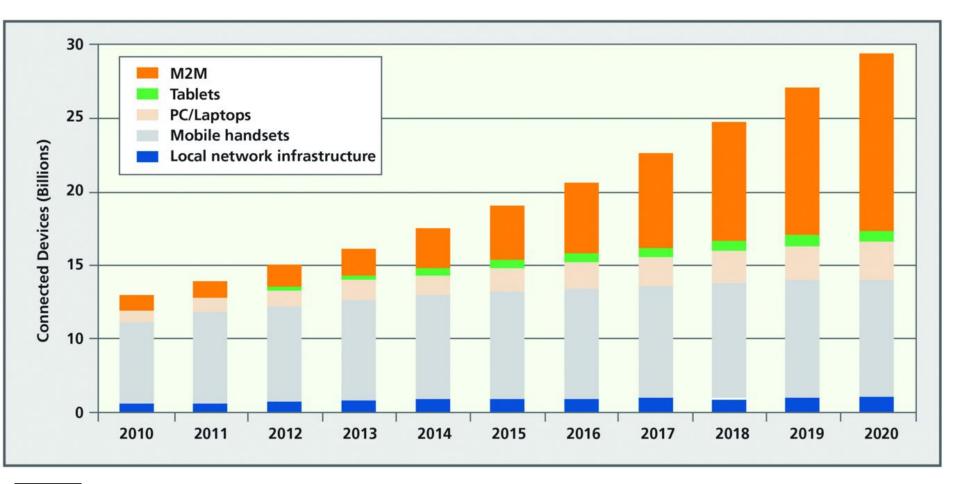
Fase 4 – Internet das Coisas e Aceleradores

Fase 4 – Internet das Coisas

ACCORDING TO ABI RESEARCH MORE THAN 30 BILLION DEVICES WILL BE WIRELESSLY CONNECTED TO THE INTERNET BY 2020.

Fase 4 – Internet das Coisas

"Since 2013, 650 million new physical objects have come online; ... 10 percent of automobiles became connected; ... In 2015, all of these things will double again."
 Gartner (2014) http://www.gartner.com/newsroom/id/2865519


 "The number of mobile-connected devices exceeded the world's population in 2014" (1.5 in 2019)

Cisco (2013); http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white paper c11-520862.html

• "In 2013, connected "things" were 7% of the total. By 2020, that will grow to 15%"

EMC (2014); http://www.emc.com/collateral/analyst-reports/idc-digital-universe-2014.pdf

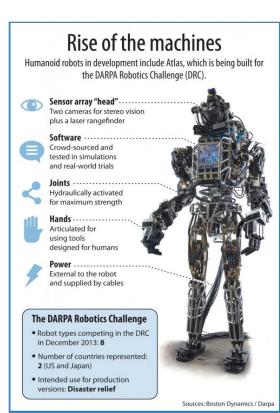
Fase 4 – Crescimento dos dispositivos conectados

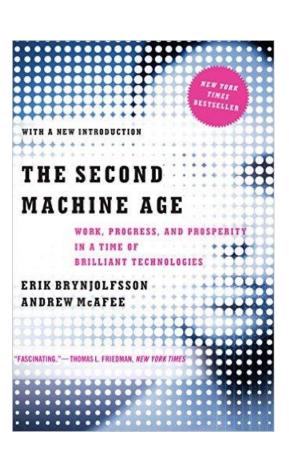
Fase 4 – Os aceleradores

O QUE ESTAMOS A FAZER

A estrutura - ligando as peças

Fase 5 – Empresa 2.0


Network-like organizational forms that firms are adopting to make themselves more flexible and responsive to changing technologies and customer demands


Enterprise 2.0 is the use of emergent social software platforms within companies, or between companies and their partners or customers

- Group editing
- Authoring
- Broadcast Search
- Collective Intelligence
- Self-organization

Fase 5 – Máquina 2.0, iterativa

Useless robot waiters fired for incompetence in China The Telegraph, April 2016

Fase 5 – Dispositivos 2.0, ligados ao mundo

Frequently Bought Together

- ☑ This item: Beginning Ruby: From Novice to Professional (Expert's Voice in Open Source) by Peter Cooper Paperback \$27.78
- Learn to Program, Second Edition (The Facets of Ruby Series) by Chris Pine Paperback \$16.94
- 🗹 Ruby on Rails Tutorial: Learn Web Development with Rails (2nd Edition) (Addison-Wesley Professional Ruby ... by Michael Hartl Paperback \$29.48

Customers Who Bought This Item Also Bought

The Well-Grounde
Rubyist
David A. Black

39
Paperback
\$32.49 \rightarrow Prime

Language

David Flanagan

The results of the result

IBM Watson Analytics

Fase 5 – Industria 4.0

MERADING DEGANIZATIONS

How Smart, Connected Products Are Transforming Companies

by Michael E. Porter and James E. Heppelmann

"How the nature of smart. connected products substantially changes the work of virtually every function within the manufacturing firm. The core functions - product development, IT, manufacturing, logistics, marketing, sales, and after-sale service - are being redefined, and the intensity of coordination among them is increasing. Entirely new functions are emerging, including those to manage the staggering quantities of data now available"

Fase 5 – Industria 4.0

Industry Internet of Things
Smart Factories
Digital Value Chain Integration

Industy 4.0: is the transformations in the design, manufacture, operation and service of manufacturing systems and products

- Aplicação TIC: digitalização, internet, cloud, IA
- Sistemas ciber-físicos: IoT, robots, drones
- Automação: CAD, ERP, BPM (desenho, operação, monitorização)

Industry 4.0

Digitalisation for productivity and growth
EPRS | European Parliamentary Research Service
Author: Ron Davies

Fase 5 – Cidades Inteligentes

European Innovation Partnership on Smart Cities and Communities

ROADMAP 2016

Supporting European Smart Cities

What?

To overcome market fragmentation and achieve scale in building a market for smart city innovations

How?

Co-creating

Sharing risk

Who?

At least 100 cities to collaborate on bundling demand, 100 industries cooperate and develop solutions

with the support of:

O IMPACTO DA 4º RI

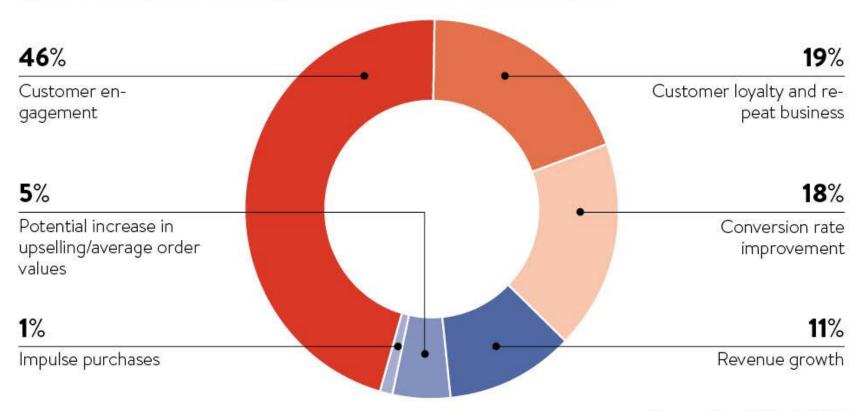
O que muda

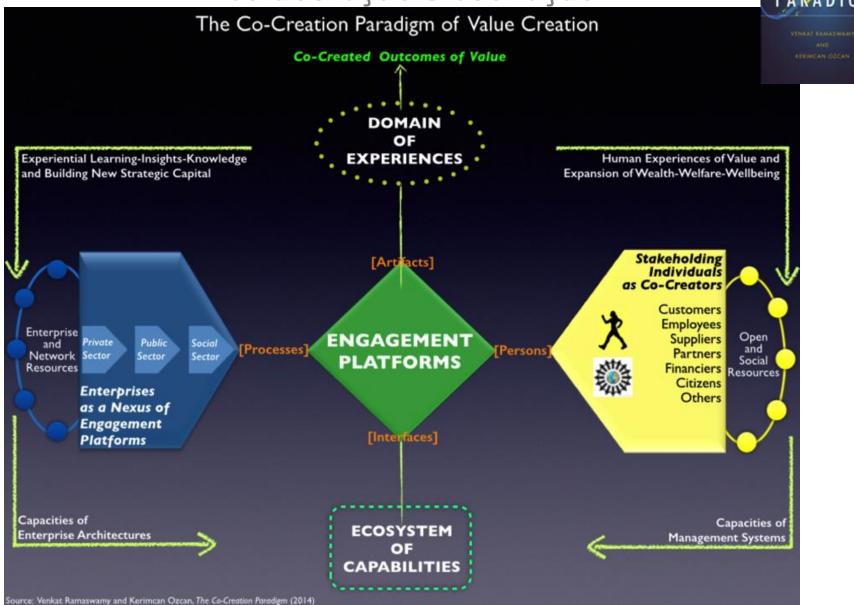
Digitalização, Conetividade, Tempo-real, Social

Desmaterialização

hulu

Sistemas ciber-físico e Automação




Personalização

MAIN BENEFITS OF PERSONALISATION TO RETAILERS

Source: Retail Week 2015

Colaboração e Cocriação

Novos modelos de negócio (digitais)

O impacto da 4º RI Valor

- Industry 4.0 can deliver estimated annual efficiency gains in manufacturing of between 6% and 8%
- The Boston Consulting Group predicts that in Germany alone, Industry 4.0
 will contribute 1% per year to GDP over ten years, creating up to 390 000 jobs
- Globally, the Industrial Internet will grow from US\$20 billion in 2012 to more than US\$500 billion in 2020, and that value added will surge from \$US23 billion in 2012 to US\$1.3 trillion in 2020
- The United States has established a National Network for Manufacturing Innovation with a proposed US\$1 billion of public funding
- Companies in the Asia/Pacific were expected to invest US\$10 billion in the Industrial IoT in 2012, with that figure rising to nearly US\$60 billion by 2020

Industry 4.0 Digitalisation for productivity and growth

O impacto da 4º RI Valor

"Total economic value-add from IoT across industries will reach \$1.9 trillion worldwide in 2020"

Gartner

"Fifty billion devices will be connected to the Internet by 2020"

CISCO

"Cities will spend \$41 trillion in the next 20 year on infrastructure upgrades for IoT"

"The utility smart grid transformation is expected to almost double the customer information system market, from \$2.5 billion in 2013 to \$5.5 billion in 2020"

> NAVIGANT RESEARCH

"The industrial Internet could add \$10-15 trillion to global GDP, essentially doubling the US economy"

"Wide deployment of IoT technologies in the auto industry could save \$100 bn annually in accident reductions"

McKinsey&Company

"IoT developers to total 3 million in 2019" ABIresearch technology market intelligence "75% of global business leaders are exploring the economic opportunities of IoT"

"The UK government recently approved 45 million pounds (US\$76.26 million) in research funding for Internet of Things technologies"

theguardian

Valor (triliões!)

IoT Market Size

(by 2025)

McKinsey&Company

\$6.1T

\$7.1T

\$14.4T

Connected Devices

(by 2020)

Gartner

26B

32B

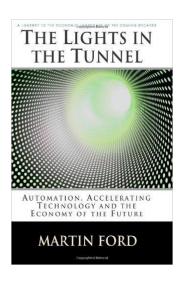
50B

Data Growth

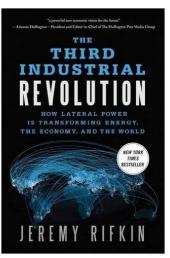
(2013 vs 2020)

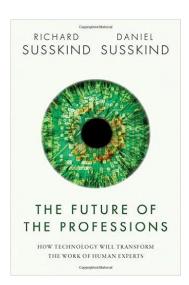
Total Data 4.4ZB ⇒ 44.4ZB

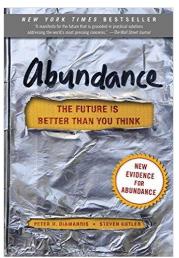
10x

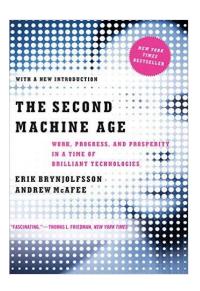

loT Data
.09ZB ⇒ 4.4ZB

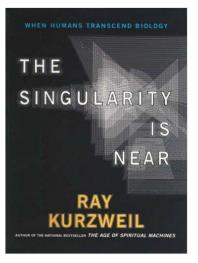
49x

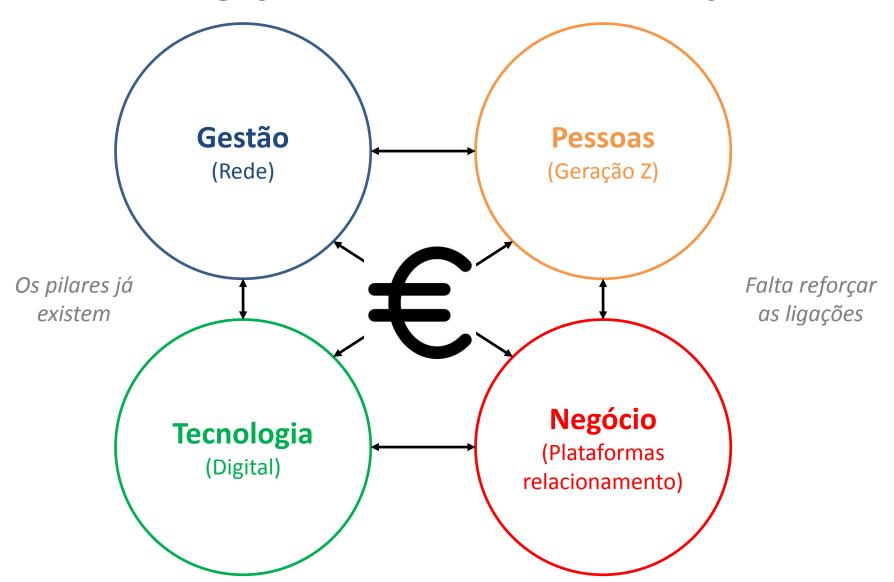

Valor

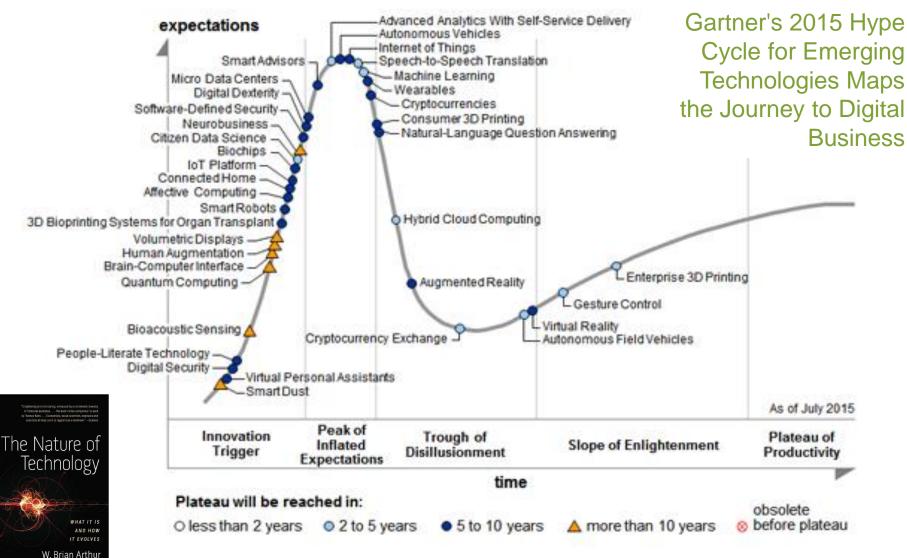

O lado Bom!


- Empresa
- Trabalho
- Educação
- Saúde
- Energia
- Liberdade









O QUE FALTA E OS PERIGOS

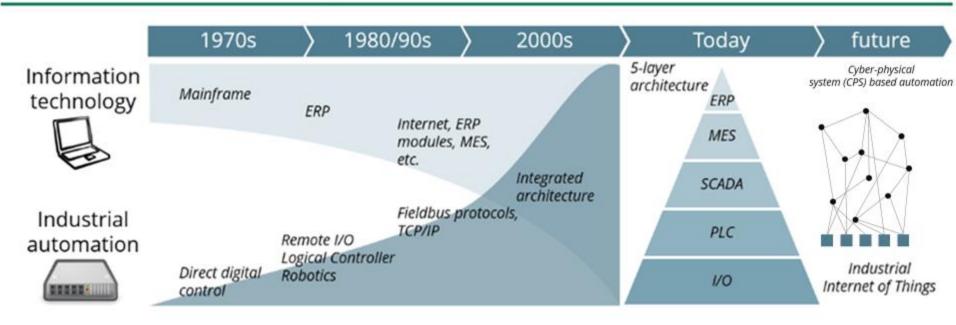
As ligações, investimento e mudança

Maturação, difusão e adoção tecnológica (tempo!)

Estamos prontos mas ... vai levar tempo (Abernathy e Utterback)!

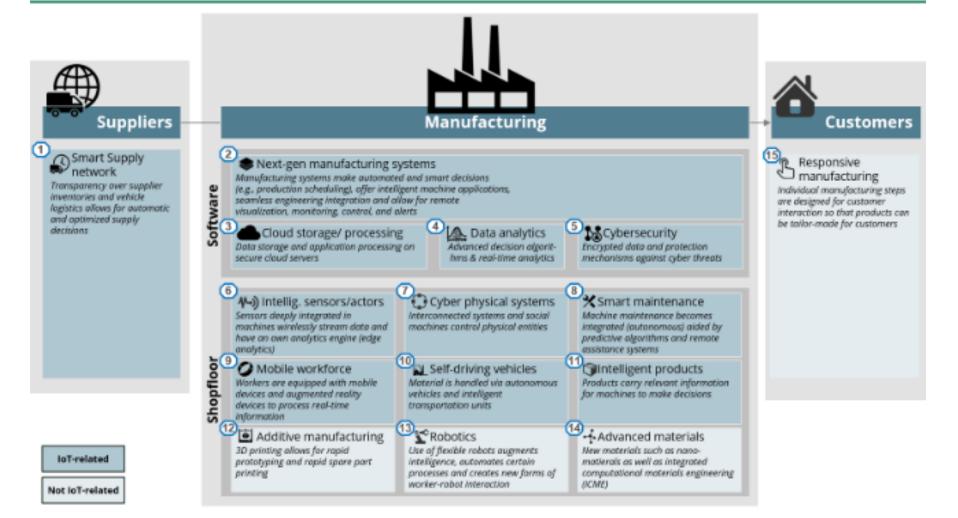
Standards - A guerra já começou

How will standards facilitate new production systems in the context of EU innovation and competitiveness in 2025?

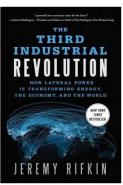


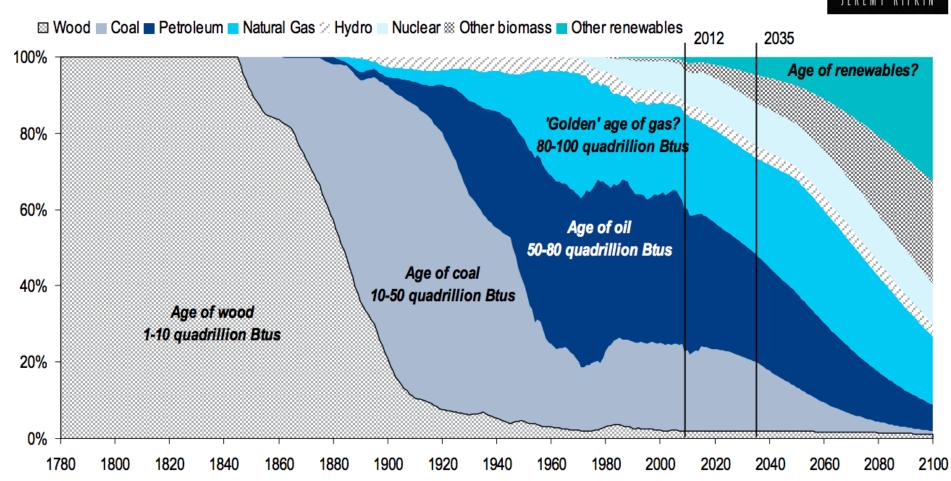
Integração das TIC e Industria – A fábrica inteligente

Convergence of IT and automation



ERP = Enterprise Resource Planning MES = Manufacturing Execution System SCADA = Supervisory Control and Data Acquisition PLC = Programmable Logic Controller I/O = Input/Output signals Source: IoT Analytics


A fábrica inteligente - Produtividade



15 components of the smart factory of the future

Energia barata, muita!

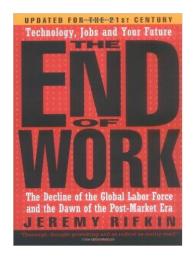


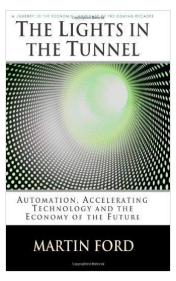
Our World in Data

Legislação, Politicas e Economia

Legislação

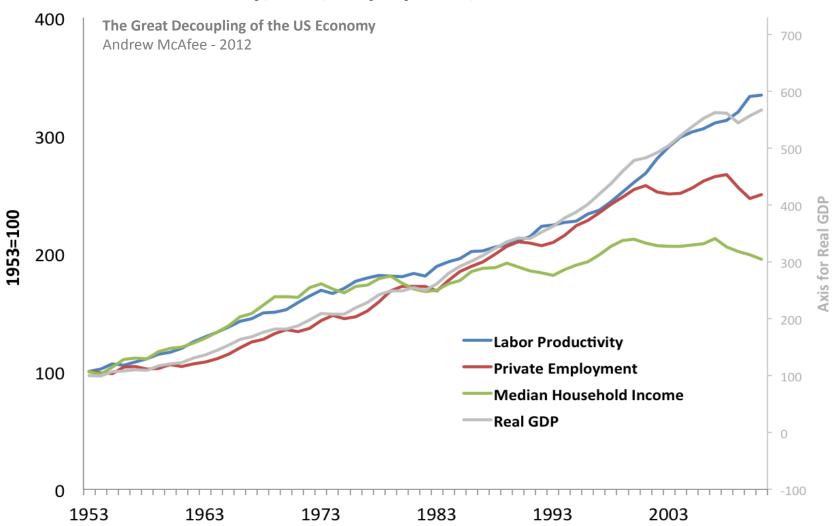
- Segurança dos dados
- Proteção pessoal
- Supervisão
- Responsabilidade
- Propriedade intelectual
- Emprego e desenvolvimento pessoal
- Incentivos à industria e indivíduos


Legislação, Politicas e Economia


Cenário 1 – curto prazo

- As máquinas automatizam tarefas simples
- São eliminados empregos "não especializados"
- O que fazer com os trabalhadores nesta situação?
- E com os jovens a entrar no mercado trabalho?

Cenário 2 – longo prazo


- A Industria 4.0 elimina a maioria dos empregos
- O que fazer com o mercado do trabalho?
- Se não há trabalhadores, vai haver consumidores?
- O que fazer com a remuneração da empresas?
- Que economia para:
 - Desenvolver as pessoas
 - Distribuir riqueza e ajustar desigualdades
 - Criar infraestruturas e sistemas comuns
 - Desenvolver novo conhecimento e inovação

Os perigos

US Productivity, GDP, Employment, and Income: 1953-2011

Os perigos

Desemprego

Recessão

Homem vs. Máquina

CONCLUSÕES

Conclusões

A 4º Revolução Industrial

Estamos a construir um "novo mundo"

- Tudo tem um rasto digital
- Tudo tem "iteratividade" e está conectado
- "Inteligência Artificial" e automação
- Integração mundo físico e digital, homem e máquina
- Aumento da produtividade, recursos abundantes, crescimento
- Precisamos de tempo, investimento e mudança processos
- Relação trabalho vs consumo -> Nova Economia?

Estamos a construir as bases para: a industria sem trabalhadores, o homem-cyborg

A 4ª Revolução Industrial

Instituto Superior de Economia e Gestão

UNIVERSIDADE TÉCNICA DE LISBOA