
This article was downloaded by: [95.94.97.235]
On: 03 July 2015, At: 03:02
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: 5 Howick Place, London, SW1P 1WG

Click for updates

Communications in Statistics - Simulation
and Computation
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/lssp20

Brownian Bridge and Other Path-
dependent Gaussian Processes Vectorial
Simulation
J. Beleza Sousaab, M. L. Esquívelb & R. M. Gasparc

a M2A/ADEETC, Instituto Superior de Engenharia de Lisboa, Instituto
Politécnico de Lisboa, Lisboa, Portugal
b CMA/DM, Faculdade de Ciências e Tecnologia, Universidade Nova
de Lisboa, Caparica, Portugal
c CEMAPRE, ISEG, Universidade de Lisboa, Lisboa, Portugal
Accepted author version posted online: 23 Jul 2014.

To cite this article: J. Beleza Sousa, M. L. Esquível & R. M. Gaspar (2015) Brownian Bridge and Other
Path-dependent Gaussian Processes Vectorial Simulation, Communications in Statistics - Simulation
and Computation, 44:10, 2608-2621, DOI: 10.1080/03610918.2014.901352

To link to this article: http://dx.doi.org/10.1080/03610918.2014.901352

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or
howsoever caused arising directly or indirectly in connection with, in relation to or arising
out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

http://crossmark.crossref.org/dialog/?doi=10.1080/03610918.2014.901352&domain=pdf&date_stamp=2014-07-23
http://www.tandfonline.com/loi/lssp20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/03610918.2014.901352
http://dx.doi.org/10.1080/03610918.2014.901352

Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

D
ow

nl
oa

de
d

by
 [

95
.9

4.
97

.2
35

]
at

 0
3:

02
 0

3
Ju

ly
 2

01
5

http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

Communications in Statistics—Simulation and Computation R©, 44: 2608–2621, 2015
Copyright © Taylor & Francis Group, LLC
ISSN: 0361-0918 print / 1532-4141 online
DOI: 10.1080/03610918.2014.901352

Brownian Bridge and Other Path-dependent
Gaussian Processes Vectorial Simulation

J. BELEZA SOUSA,1,2 M. L. ESQUÍVEL,2 AND R. M. GASPAR3

1M2A/ADEETC, Instituto Superior de Engenharia de Lisboa, Instituto
Politécnico de Lisboa, Lisboa, Portugal
2CMA/DM, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa,
Caparica, Portugal
3CEMAPRE, ISEG, Universidade de Lisboa, Lisboa, Portugal

The iterative simulation of the Brownian bridge is well known. In this article, we present
a vectorial simulation alternative based on Gaussian processes for machine learning
regression that is suitable for interpreted programming languages implementations. We
extend the vectorial simulation of path-dependent trajectories to other Gaussian pro-
cesses, namely, sequences of Brownian bridges, geometric Brownian motion, fractional
Brownian motion, and Ornstein–Ulenbeck mean reversion process.

Keywords Brownian bridge; Gaussian processes for machine learning regression;
Path-dependent Gaussian processes; Vectorial simulation.

Mathematics Subject Classification Primary 60G15; 68U20; Secondary 65C20;
62-04; 90-04.

1. Introduction

Interpreted programming languages like Sage, Octave, Mathematica, and Matlab are cur-
rently important frameworks in research and development.

In these programming languages, it is crucial to use vectorial algorithms instead of iter-
ative ones in order to achieve the execution speeds of compiled languages. This is because
vectorial operations are typically supported by built-in functions which are implemented
by optimized machine code.

The iterative simulation of the Brownian bridge is well known (Glasserman, 2003;
Qua, 2012). In this article, we present a vectorial simulation alternative based on Gaussian
processes for machine learning regression that is suitable for interpreted programming
languages implementations.

We extend the vectorial simulation of path-dependent trajectories to other Gaussian
processes, namely, sequences of Brownian bridges, geometric Brownian motion, fractional
Brownian motion and Ornstein–Ulenbeck mean reversion process, by developing a Gaus-
sian path-dependent trajectories simulation vectorial framework.

Received September 30, 2012; Accepted February 24, 2014
Address correspondence to Prof. J. Beleza Sousa, ISEL Instituto Superior de Engenharia de

Lisboa, M2A/ADEETC, Rua Conselheiro Emdio Navarro, 1, Lisboa, 1959-007 Portugal; E-mail:
jsousa@deetc.isel.ipl.pt

2608

D
ow

nl
oa

de
d

by
 [

95
.9

4.
97

.2
35

]
at

 0
3:

02
 0

3
Ju

ly
 2

01
5

Brownian Bridge Vectorial Simulation 2609

We illustrate the flexibility of the path-dependent vectorial simulation procedure by
creating a two-dimensional Wiener process representation of a Norbert Wiener photograph.

Simulation of Gaussian processes immediately spread with computers availability and
became an important tool in many science areas, such as mathematics (Kloeden and Platen,
1992), finance (Glasserman, 2003), engineering (Kasdin, 1995), hydrology (Mandelbrot,
1971), and geology (Alabert, 1987), among many others.

In particular, the simulation of Brownian bridges, geometric Brownian motion, frac-
tional Brownian motion, and Ornstein–Ulenbeck mean reversion process, play an important
role in Monte Carlo methods (Moskowitz and Caflisch, 1996), securities pricing (Broadie
and Glasserman, 1997), communication networks (Paxson, 1997) and particles motion
(Gillespie, 1996), respectively.

A wide range of path-dependent Gaussian trajectories simulation methods exist, span-
ning from the earlier, based on sampling the unconditional distribution (Hoffman and Ribak,
1991), Cholesky factorization (Davis, 1987) or FFT (Dietrich and Newsam, 1996), to the
more recent efforts of implementing the old methods in the emerging parallel architectures
(Garland et al., 2008; Volkov and Demmel, 2008).

In this article, we use the Cholesky method. Despite having known limitations (Jean-
François, 2000) it allows the extension to the path-dependent case and we show that it is
relevant concerning the execution speed of interpreted programming languages implemen-
tations.

2. Brownian Bridge Iterative Simulation

A Brownian bridge is a standard Brownian motion W conditioned to W (1) = 0. The
Brownian bridge condition W (1) = 0 can be generalized to other time instants greater than
zero and to other values besides zero.

The standard Brownian motion W, defined in R
+
0 , is also called a Wiener process

(Björk, 2004) and has the following properties:

1. W (0) = 0;
2. W has independent increments, i.e. if r < s ≤ t < u then W (u)−W (t) and W (s)−

W (r) are independent random variables;
3. For s < t the random variable W (t) − W (s) has the Gaussian distribution

N (0,
√

t − s);
4. W has almost surely continuous trajectories.

In addition, the Wiener process is a Gaussian process with mean function m(t) and
covariance function cov(s, t):

m(t) = 0, (1)

cov(s, t) = min(s, t). (2)

In order to illustrate the iterative simulation of a Brownian bridge trajectory B, consider
that at some step we have 0 < u < s < t < 1, B(u) = α, B(t) = β and we want to simulate
the value B(s) (Glasserman, 2003). Given the Wiener process properties, the random vector

D
ow

nl
oa

de
d

by
 [

95
.9

4.
97

.2
35

]
at

 0
3:

02
 0

3
Ju

ly
 2

01
5

2610 Sousa et al.

[B(u)B(s)B(t)]T is Gaussian with mean vector and covariance matrix:
⎡
⎢⎣

B(u)

B(s)

B(t)

⎤
⎥⎦ ∼ N

⎛
⎝

⎡
⎣ 0

0
0

⎤
⎦ ,

⎡
⎣u u u

u s s

u s t

⎤
⎦

⎞
⎠ (3)

Therefore, the conditional distribution B(s)|B(u), B(t) is given by

B(s)|B(u), B(t) ∼ N
(

(t − s)α + (s − u)β

t − u
,

(s − u)(t − s)

t − u

)
(4)

Thus, the value B(s) is simulated by

B(s) = (t − s)α + (s − u)β

t − u
+

√
(s − u)(t − s)

t − u
Z, (5)

where Z ∼ N (0, 1) is an increment independent of all Z values previously used in the
simulation.

Finally, the iterative simulation of a Brownian bridge trajectory consists of starting
with u = 0, t = 1, B(0) = 0, B(1) = 0 and iteratively filling a trajectory sample at time s
(between u and t) with Eq. (5), then moving one of the end points to the simulated sample
and repeating the process until all trajectory samples are filled.

Figure 1 shows a sequence of 500 simulated independent Gaussian N (0, 1) incre-
ments (white noise), and the corresponding simulated Wiener process and Brownian bridge
trajectories (sampled uniformly 500 times between zero and one). The Brownian bridge
trajectory was simulated by the iterative procedure above.

3. Gaussian Processes for Machine Learning

The goal of Gaussian processes for machine learning regression is to find the nonlinear
unknown mapping y = f (x), from data (X, y), using Gaussian distributions over functions
(Rasmussen and Williams, 2005):

GP ∼ N (m(x), cov(x1, x2)). (6)

The Gaussian process defined by m(x) and cov(x1, x2), in Eq. (6), is the prior process.
The pair (X, y) is the training set. The matrix X collects a set of n vectors x,where the

value y = f (x) was observed. The corresponding y values are collected in vector y.
The set of vectors x� where the values y� = f (x�) were not observed, is collected in

matrix X�. The matrix X� is the test set.
The regression function is the mean function of the process defined by all the trajectories

of the prior process that passes through the training set. The regression confidence is the
corresponding covariance function. The regression mean and the regression confidence
define the posterior process on data.

As presented in the previous section, the Wiener process is a scalar Gaussian process

W ∼ N (m(t), cov(s, t)) (7)

D
ow

nl
oa

de
d

by
 [

95
.9

4.
97

.2
35

]
at

 0
3:

02
 0

3
Ju

ly
 2

01
5

Brownian Bridge Vectorial Simulation 2611

Figure 1. Simulated trajectories of: (a) white noise; (b) the corresponding Wiener process; (c) the
corresponding Brownian bridge.

where m(t) is given by Eq. (1) and cov(s, t) by Eq. (2).
In this case, the mapping f is the scalar mapping y = f (t), where y is the value

of W at time t. This reduces the training set to the pair of vectors (t, y), and the test set to
vector t�.

Since the process is Gaussian (Rasmussen and Williams, 2005)

[
y
y�

]
∼ N

([
m
m�

]
,

[
K K�

KT
� K��

])
(8)

and

p(y�|t�, t, y) ∼ N (
m� + KT

� K−1(y − m), K�� − KT
� K−1K�

)
(9)

where m and m� are mean vectors of training and test sets, K is the training set covariance
matrix, K� the training-test covariance matrix and K�� the test set covariance matrix.

The conditional distribution

p(y�|t�, t, y) (10)

corresponds to the posterior process on the data

GPD ∼ N (mD(t), covD(s, t)) (11)

D
ow

nl
oa

de
d

by
 [

95
.9

4.
97

.2
35

]
at

 0
3:

02
 0

3
Ju

ly
 2

01
5

2612 Sousa et al.

where

mD(t) = m(t) + KT
t,tK

−1(y − m) (12)

and

covD(s, t) = cov(s, t) − KT
t,sK

−1Kt,t (13)

where Kt,t is a covariance vector between every training instant and t.
Eq. (12) is the regression function, while Eq. (13) is the regression confidence.

Eqs. (12) and (13) are the central equations of Gaussian processes for machine learning
regression.

Figure 2 shows an example of Gaussian processes for machine learning regression
using the Wiener process as the prior process and the set of 500 time instants, uniformly
distributed between zero and one, as the test set.

4. Browning Bridge Vectorial Simulation

The vectorial simulation of Brownian bridge trajectories is as achieved by joining Sections
2 and 3 .

Considering:

1. the Wiener process W with mean and covariance functions given by Eqs. (1)
and (2);

2. the training set with the single pair (t, y) = (1, 0) corresponding to the Brownian
bridge condition W (1) = 0;

3. the test vector t� = [t1, t2, . . . , tn]T where t1, t2, . . . , tn are the time instants where
to sample the Brownian bridge trajectory.

The Brownian bridge process B is Gaussian and the random vector B = B(t�) is also
Gaussian

B ∼ N (mD, covD) (14)

where mD is B mean vector and covD is B covariance matrix. The element i of vector mD
is given by

mD i = mD(ti) (15)

and the element i, j of matrix covD is given by

covD i,j = covD(ti , tj). (16)

Functions mD(ti) and covD(ti , tj) are those of Eqs. (1) and (2).
Therefore, a Brownian bridge trajectory can be simulated as any other Gaussian vector

(Glasserman, 2003), using:

B = mD + CZ (17)

D
ow

nl
oa

de
d

by
 [

95
.9

4.
97

.2
35

]
at

 0
3:

02
 0

3
Ju

ly
 2

01
5

Brownian Bridge Vectorial Simulation 2613

Figure 2. Gaussian processes for machine learning regression with the Wiener process as prior:
(a) prior process mean (dashed), prior process two standard deviations band (gray) and the training
set (circles); (b) regression function (dashed) and two standard deviations regression confidence band
(gray); (c) training set simulated trajectory; (d) simulated Wiener process trajectories passing through
the training set.

where C is the Cholesky decomposition of covD and Z is a sample of the Gaussian random
vector N (0, I).

Figure 3 shows some Brownian bridge trajectories simulated with the vectorial Eq. (17).
The solid black one was simulated with the Gaussian increments of Fig. 1. Since Eq. (17)
is just a vectorial alternative to the iterative procedure of Section 2, the solid black
trajectory is, as it would be expected, equal to the Brownian bridge trajectory of Fig. 1.

5. Execution Time Comparison

In order to compare the execution times of the iterative Brownian bridge simulation proce-
dure of Section 2 and the vectorial procedure of Section 4 under an interpreted language

D
ow

nl
oa

de
d

by
 [

95
.9

4.
97

.2
35

]
at

 0
3:

02
 0

3
Ju

ly
 2

01
5

2614 Sousa et al.

Figure 3. Brownian bridge trajectories simulated with the vectorial Eq. (17): (a) prior process mean
(dashed), prior process two standard deviations band (gray) and the training set (circle); (b) regression
function (dashed) and two standard deviation regression confidence band (gray); (c) Brownian bridge
simulated trajectories.

framework, we implemented both using the Mathematica 8 language (Wolfram Research,
2011) and tested the two alternatives on two different stages:

Stage 1 Inspired by the order of magnitude of typical setups found in financial markets,
such as 250 daily prices per year, and stock indices with up to 500 stocks, we defined
the reference task of generating 1000 Brownian bridges sampled uniformly 1000 times.
This would correspond to simulate four years, of daily prices, of an index as bigger as
twice the S&P500.

Stage 2 In order to evaluate the performance sensitivity to the task specification, we varied
both the number of samples per trajectory and the number of trajectories.

Table 1 describes the execution system, the reference task, and the execution times
obtained for both alternatives on Stage 1.

As it would be expected, the Brownian bridge vectorial simulation with the Mathemat-
ica 8 language is faster than the iterative alternative. In the particular case of the reference
task, approximately 10 times faster. As mentioned before, this is because vectorial oper-
ations are supported by built-in functions which are implemented by optimized machine
code.

Tables 2 and 3 describe the execution times obtained for both alternatives on Stage 2.
Table 2 shows, in a clear way, the main limitation of the vectorial simulation procedure,

which is memory space. Simulation of all trajectories at a time, using Eq. (17), requires
memory space for the number-of-samples-by-number-of-samples square matrix C and for
the number-of-samples-by-number-of-trajectories rectangular matrix Z. As the number of

D
ow

nl
oa

de
d

by
 [

95
.9

4.
97

.2
35

]
at

 0
3:

02
 0

3
Ju

ly
 2

01
5

Brownian Bridge Vectorial Simulation 2615

Table 1
Iterative and vectorial execution times comparison for the reference task

(a) System
CPU Intel Core2 CPU 6300 1.86GHz
Memory 4GB
OS Linux × 86 (32bit)
Language Mathematica 8.0.4.0

(b) Task

Simulation Brownian bridge trajectories

Number of trajectories 1000

Number of samples per trajectory 1000 (uniformly)

(c) Execution Times (in seconds)
Iterative 32.31
Vectorial 3.49

trajectories and the number of samples per trajectory grow, the memory space becomes a
severe limitation of the vectorial simulation procedure.

Table 3 shows that, for a small number of trajectories (up to 100) with a reasonable
number of samples (1000), the vectorial simulation procedure is useless, due to the overhead
execution time for computing matrix C.

6. Extensions

It is clear by the Brownian bridge vectorial simulation construction that the simulation
procedure can be naturally extended in the following three ways:

1. considering a condition different from W (1) = 0 (either in the time instant and its
value);

2. considering more than one condition (sequences of bridges);
3. considering other Gaussian processes besides the Wiener process (considering mean

and covariance functions different from the Wiener process ones).

Table 2
1000 trajectories execution time sensitivity to the number of samples

Execution time (s)

Number of samples Iterative Vectorial Improvement (times faster)

10 0.26 0.003 86.67
100 3.39 0.04 84.75

1000 32.42 3.93 8.25
10000 305.43 Out of Memory —

100000 2989.15 Out of Memory —

D
ow

nl
oa

de
d

by
 [

95
.9

4.
97

.2
35

]
at

 0
3:

02
 0

3
Ju

ly
 2

01
5

2616 Sousa et al.

Table 3
1000 samples per trajectory execution time sensitivity to the number of trajectories

Execution time (s)

Number of trajectories Iterative Vectorial Improvement (times faster)

10 0.29 3.32 11.45 (slower)
100 3.40 3.36 1.01

1000 32.24 3.91 8.24
10000 300.28 8.48 35.41

100000 2981.13 Out of Memory —

The first two ways were already illustrated by Fig. 2(d), where there were a total of
four conditions, different from the Brownian bridge condition.

Regarding the third way Figs. 4–6 illustrate the same example of Fig. 2, but now for
geometric Brownian motion, fractional Brownian motion and Ornstein–Ulenbeck mean
reversion process. We chose these processes for their importance in modeling stock prices

Figure 4. Gaussian processes for machine learning regression with geometric Brownian motion
as prior: (a) prior process mean (dashed), prior process two standard deviations band (gray) and the
training set (circle); (b) regression function (dashed) and two standard deviation regression confidence
band (gray); (c) path-dependent simulated trajectories (passing through the training set).

D
ow

nl
oa

de
d

by
 [

95
.9

4.
97

.2
35

]
at

 0
3:

02
 0

3
Ju

ly
 2

01
5

Brownian Bridge Vectorial Simulation 2617

Figure 5. Gaussian processes for machine learning regression with the Ornstein–Ulenbeck mean re-
version process as prior: (a) prior process mean (dashed), prior process two standard deviations band
(gray) and the training set (circles); (b) regression function (dashed) and two standard deviation regres-
sion confidence band (gray); (c) path-dependent simulated trajectories (passing through the training
set).

and interest rates. The simulation procedure is the same as the one in the example of Fig. 2,
except that the appropriate mean and covariance functions are used.

In the geometric Brownian motion case, the simulation was done for the underlying
log normal process, which is a Gaussian process with mean and covariance functions given
by

m(t) =
(

μ − σ 2

2

)
t (18)

and

cov(s, t) = σ 2 min(s, t) (19)

where μ is the drift and σ is the volatility. The geometric Brownian motion trajectories were
obtained by taking the exponential of the log normal ones and multiplying by the process
initial value x0. The values used in the simulation examples of Fig. 4 were: x0 = 0.5;
μ = 1.0 and σ = 1.0.

D
ow

nl
oa

de
d

by
 [

95
.9

4.
97

.2
35

]
at

 0
3:

02
 0

3
Ju

ly
 2

01
5

2618 Sousa et al.

Figure 6. Gaussian processes for machine learning regression with fractional Brownian motion
as prior: (a) prior process mean (dashed), prior process two standard deviations band (gray) and
the training set (circles); (b) regression function (dashed) and two standard deviation regression
confidence band (gray); (c) path-dependent simulated trajectories (passing through the training
set).

In the fractional Brownian motion case, the mean and covariance functions are given
by

m(t) = 0 (20)

and

cov(s, t) = 1

2

(|s|2H + |t |2H − |s − t |2H
)

(21)

where H is the Hurst index. The value used in the simulation examples of Fig. 5 was:
H = 0.3.

In the Ornstein–Ulenbeck mean reversion process case, the mean and covariance
functions are given by

m(t) = x0e
−kt + θ (1 − e−kt) (22)

D
ow

nl
oa

de
d

by
 [

95
.9

4.
97

.2
35

]
at

 0
3:

02
 0

3
Ju

ly
 2

01
5

Brownian Bridge Vectorial Simulation 2619

Figure 7. 2D Wiener process single path representation of a Norbert Wiener photo.

and

cov(s, t) = σ 2

2k
e−k(s+t) (e2k min(s,t) − 1

)
(23)

where x0 is the process initial value, k is the mean reversion velocity, θ is the mean reversion
level, and σ is the volatility. The values used in the simulation examples of Fig. 6 were:
x0 = 0.5; k = 2.0; θ = 0.1 and σ = 0.5.

7. Illustration

In this section, we illustrate the great flexibility of the path dependent vectorial simulation
procedure by constructing a 2D Wiener process single path representation of a Norbert
Wiener photo. The steps taken to construct the representation are the following:

D
ow

nl
oa

de
d

by
 [

95
.9

4.
97

.2
35

]
at

 0
3:

02
 0

3
Ju

ly
 2

01
5

2620 Sousa et al.

1. Choose a white background photo.
2. Obtain a binarized with dithering version of the photo.
3. Obtain a possible sequence of nearest black pixels: starting at a random black pixel

find its nearest black pixel neighbor; repeat the procedure from the found neighbor,
not considering the pixels already processed, until reaching the last unprocessed
pixel.

4. Consider the black pixels coordinates, x and y, as the conditioning constraints.
5. For the sequence of the x coordinate constraints, simulate a Wiener process trajectory

by sampling uniformly 50 times each successive pair of constraints.
6. Repeat the previous step for the y coordinate (using increments independent from

those used for the x coordinate).
7. Plot the y coordinate trajectory as a function of the x coordinate trajectory.

Figure 7 shows the resulting image.

8. Conclusions

The contribution of the present article is twofold:

1. It presents a vectorial alternative to the iterative simulation of Brownian bridge
trajectories which is based on Gaussian processes for machine learning regression
and is relevant regarding the execution speed of interpreted programming languages
implementations. The main limitation of the presented alternative is memory space.

2. It extends in a natural way the vectorial simulation of path dependent trajectories to
other Gaussian processes such as sequences of Brownian bridges, geometric Brow-
nian motion, fractional Brownian motion, and Ornstein–Ulenbeck mean reversion
process.

Acknowledgments

The authors would like to thank Alexey A. Muravlev, from Steklov Mathematical Institute
of RAS, Moscow, Russia, the idea of extending the simulation procedure to path-dependent
fractional Brownian motion.

Funding

J. Beleza Sousa was partially supported by the ISEL/IPL scholarship SFRH/PROTEC/
49576/2009. R. M. Gaspar’s research was partially supported by the SANAF project,
financed by the Portuguese Science Foundation with project reference number UTA
CMU/MAT/0006/2009.

References

Alabert, F. (1987). The practice of fast conditional simulations through the lu decomposition of the
covariance matrix. Mathematical Geology 19(5):369–386.

Björk, T. (2004). Arbitrage Theory in Continuous Time. 2nd ed. Oxford:Oxford University Press.
Broadie, M., Glasserman, P. (1997). Pricing american-style securities using simulation. Journal of

Economic Dynamics and Control 21(8):1323–1352.
Davis, M. W. (1987). Production of conditional simulations via the lu triangular decomposition of

the covariance matrix. Mathematical Geology 19(2):91–98.

D
ow

nl
oa

de
d

by
 [

95
.9

4.
97

.2
35

]
at

 0
3:

02
 0

3
Ju

ly
 2

01
5

Brownian Bridge Vectorial Simulation 2621

Dietrich, C. R., Newsam, G. N. (1996). A fast and exact method for multidimensional gaussian
stochastic simulations: Extension to realizations conditioned on direct and indirect measure-
ments. Water Resources Research 32(6):1643–1652.

Garland, M., Le Grand, S., Nickolls, J., Anderson, J., Hardwick, J., Morton, S., Phillips, E., Zhang,
Y., Volkov, V. (2008). Parallel computing experiences with cuda. Micro, IEEE 28(4):13–27.

Gillespie, D. T. (1996). Exact numerical simulation of the Ornstein–Uhlenbeck process and its
integral. Physical Review E 54(2):2084.

Glasserman, P. (2003). Monte Carlo Methods in Financial Engineering (Stochastic Modelling and
Applied Probability) (v. 53). Berlin: Springer.

Hoffman, Y., Ribak, E. (1991). Constrained realizations of gaussian fields-a simple algorithm. The
Astrophysical Journal 380:L5–L8.

Jean-François, C. (2000). Simulation and identification of the fractional Brownian motion: a biblio-
graphical and comparative study. Journal of Statistical Software 5:1–53.

Kasdin, N. J. (1995). Discrete simulation of colored noise and stochastic processes and 1/f α power
law noise generation. Proceedings of the IEEE 83(5): 802–827.

Kloeden, P. E., Platen, E. (1992). Numerical Solution of Stochastic Differential Equations. Berlin:
Springer.

Mandelbrot, B. B. (1971). A fast fractional gaussian noise generator. Water Resources Research
7(3):543–553.

Moskowitz, B., Caflisch, R. E. (1996). Smoothness and dimension reduction in quasi-Monte Carlo
methods. Mathematical and Computer Modelling 23(8):37–54.

Paxson, V. (1997). Fast, approximate synthesis of fractional gaussian noise for generating self-similar
network traffic. ACM SIGCOMM Computer Communication Review 27(5):5–18.

Quantliba free/open-source library for quantitative finance, 2012. Available at: http://quantlib.org/”.
Rasmussen, C. E., Williams, C. K. I. (2005). Gaussian Processes for Machine Learning (Adaptive

Computation and Machine Learning series). The MIT Press.
Volkov, V., Demmel, J. (2008). Lu, qr and cholesky factorizations using vector capabilities of gpus.

EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2008-49, May pp.
2008–49.

Wolfram Research. Inc. (2011). Mathematica edition: Version 8.0.4.0.

D
ow

nl
oa

de
d

by
 [

95
.9

4.
97

.2
35

]
at

 0
3:

02
 0

3
Ju

ly
 2

01
5

