
Appendix A

An inventory of continuous distribu-
tions

A.1 INTRODUCTION

Descriptions of the models are given starting in Section A.2. First, a few mathe-
matical preliminaries are presented that indicate how the various quantities can be
computed.
The incomplete gamma function1 is given by

�(�;I) =
1

�(�)

Z 6

0

E��17�2 6E� � � 0� I � 0�

with �(�) =
Z �

0

E��17�2 6E� � � 0�

*

1 Some references, such as [3], denote this integral � (��  ) and dene �(��  ) =
��
� ���1��� ��.

Note that this denition does not normalize by dividing by �(�). When using software to evaluate
the incomplete gamma function, be sure to note how it is dened.
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702 AN INVENTORY OF CONTINUOUS DISTRIBUTIONS

A useful fact is �(�) = (�� 1)�(�� 1). Also, dene

 (�;I) =

Z �

6

E��17�2 6E� I � 0�

At times we will need this integral for nonpositive values of �. Integration by parts
produces the relationship

 (�;I) = �
I�7�6

�
+
1

�
 (�+ 1;I)�

This process can be repeated until the rst argument of  is � + =, a positive
number. Then it can be evaluated from

 (�+ =;I) = �(�+ =)[1� �(�+ =;I)]�

However, if � is a negative integer or zero, the value of  (0;I) is needed. It is

 (0;I) =

Z �

6

E�17�2 6E = �1(I)�

which is called the exponential integral. A series expansion for this integral is

�1(I) = �0�57721566490153� lnI�
�X

-=1

(�1)-I-

@(@!)
�

When � is a positive integer, the incomplete gamma function can be evaluated
exactly as given in the following theorem.

Theorem A.1 For integer �,

�(�;I) = 1�
��1X

)=0

I)7�6

<!
�

Proof: For � = 1, �(1;I) =
R 6
0
7�2 6E = 1 � 7�6, and so the theorem is true for

this case. The proof is completed by induction. Assume it is true for � = 1� � � � � @.
Then
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The incomplete beta function is given by

�(3� 4;I) =
�(3+ 4)

�(3)�(4)

Z 6

0

E!�1(1� E)"�1 6E� 3 � 0� 4 � 0� 0 � I � 1�

where

�(3� 4) =
�(3+ 4)

�(3)�(4)

is the beta function, and when 4 � 0 (but 3 � 1 + b�4c), repeated integration by
parts produces

�(3)�(4)�(3� 4;I) = ��(3+ 4)
�
I!�1(1� I)"

4

+
(3� 1)I!�2(1� I)"+1

4(4+ 1)
+ · · ·

+
(3� 1) · · · (3� C)I!�0�1(1� I)"+0

4(4+ 1) · · · (4+ C)

¸

+
(3� 1) · · · (3� C � 1)
4(4+ 1) · · · (4+ C)

�(3� C � 1)

×�(4+ C + 1)�(3� C � 1� 4+ C + 1;I)�

where C is the smallest integer such that 4+ C+1 � 0. The rst argument must be
positive (that is, 3� C � 1 � 0).
Numerical approximations for both the incomplete gamma and the incomplete

beta function are available in many statistical computing packages as well as in
many spreadsheets because they are just the distribution functions of the gamma
and beta distributions. The following approximations are taken from [3]. The
suggestion regarding using di�erent formulas for small and large I when evaluating
the incomplete gamma function is from [144]. That reference also contains computer
subroutines for evaluating these expressions. In particular, it provides an e�ective
way of evaluating continued fractions.
For I � �+ 1 use the series expansion

�(�;I) =
I�7�6

�(�)

�X

-=0

I-

�(�+ 1) · · · (�+ @)

while for I � �+ 1, use the continued-fraction expansion

1� �(�;I) =
I�7�6

�(�)

1

I+
1� �

1 +
1

I+
2� �

1 +
2

I+ · · ·

�

The incomplete gamma function can also be used to produce cumulative probabil-
ities from the standard normal distribution. Let �(K) = Pr(2 � K), where 2 has
the standard normal distribution. Then, for K � 0, �(K) = 0�5 + �(0�5; K2�2)�2,
while for K � 0, �(K) = 1��(�K).
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The incomplete beta function can be evaluated by the series expansion

�(3� 4;I) =
�(3+ 4)I!(1� I)"

3�(3)�(4)

×

"
1 +

�X

-=0

(3+ 4)(3+ 4+ 1) · · · (3+ 4+ @)
(3+ 1)(3+ 2) · · · (3+ @+ 1)

I-+1

#
�

The gamma function itself can be found from

ln�(�)
�
= (�� 1

2) ln�� �+
ln(2
)

2

+
1

12�
�

1

360�3
+

1

1,260�5
�

1

1,680�7
+

1

1,188�9
�

691

360,360�11

+
1

156�13
�

3,617
122,400�15

+
43,867

244,188�17
�

174,611
125,400�19

�

For values of � above 10, the error is less than 10�19. For values below 10, use the
relationship

ln�(�) = ln�(�+ 1)� ln��

The distributions are presented in the following way. First, the name is given
along with the parameters. Many of the distributions have other names, which are
noted in parentheses. Next the density function 8(I) and distribution function � (I)
are given. For some distributions, formulas for starting values are given. Within
each family the distributions are presented in decreasing order with regard to the
number of parameters. The Greek letters used are selected to be consistent. Any
Greek letter that is not used in the distribution means that that distribution is a
special case of one with more parameters but with the missing parameters set equal
to 1. Unless specically indicated, all parameters must be positive.
Except for two distributions, ination can be recognized by simply inating the

scale parameter �. That is, if 0 has a particular distribution, then 50 has the
same distribution type, with all parameters unchanged except � is changed to 5�.
For the lognormal distribution, 
 changes to 
+ ln(5) with � unchanged, while for
the inverse Gaussian, both 
 and � are multiplied by 5.
For several of the distributions, starting values are suggested. They are not

necessarily good estimators, just places from which to start an iterative procedure
to maximize the likelihood or other objective function. These are found by either
the methods of moments or percentile matching. The quantities used are

Moments: ? =
1

@

-X

(=1

I(, E =
1

@

-X

(=1

I2( �

Percentile matching: A = 25th percentile, B = 75th percentile.

For grouped data or data that have been truncated or censored, these quantities
may have to be approximated. Because the purpose is to obtain starting values
and not a useful estimate, it is often su�cient to just ignore modications. For
three- and four-parameter distributions, starting values can be obtained by using
estimates from a special case, then making the new parameters equal to 1. An
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all-purpose starting value rule (for when all else fails) is to set the scale parameter
(�) equal to the mean and set all other parameters equal to 2.
Risk measures may be calculated as follows. For VaR/(0), the value-at-risk,

solve the equation A = � [Var/(0)]. Where there are convenient explicit solutions,
they are provided. For TVaR/(0), the tail-value-at-risk, use the formula

TVaR/(0) = Var/(0) +
E(0)� E[0 
Var/(0)]

1� A
�

Explicit formulas are provided in a few cases.
All the distributions listed here (and many more) are discussed in great detail in

[91]. In many cases, alternatives to maximum likelihood estimators are presented.

A.2 TRANSFORMED BETA FAMILY

A.2.1 Four-parameter distribution

A.2.1.1 Transformed betaE�, �, �, � (generalized beta of the second kind, Pear-
son Type VI)2

8(I) =
�(�+ �)

�(�)�(�)

�(I��)�	

I[1 + (I��)� ]�+	
�

� (I) = �(� � �;F)� F =
(I��)�

1 + (I��)�
�

E[0*] =
�*�(� + =��)�(�� =��)

�(�)�(�)
� ��� � = � ���

E[(0 
 I)*] =
�*�(� + =��)�(�� =��)

�(�)�(�)
�(� + =��� �� =��;F)

+ I*[1� � (I)]� = � ��� �

Mode = �

µ
�� � 1
�� + 1

¶1
�
� �� � 1� else 0�

A.2.2 Three-parameter distributions

A.2.2.1 Generalized ParetoE�, �, � (beta of the second kind)

8(I) =
�(�+ �)

�(�)�(�)

��I	�1

(I+ �)�+	
�

� (I) = �(� � �;F)� F =
I

I+ �
�

2There is no inverse transformed beta distribution because the reciprocal has the same distribution,
with � and � interchanged and � replaced with 1
�.
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E[0*] =
�*�(� + =)�(�� =)

�(�)�(�)
� �� � = � ��

E[0*] =
�*�(� + 1) · · · (� + = � 1)

(�� 1) · · · (�� =)
if = is a positive integer,

E[(0 
 I)*] =
�*�(� + =)�(�� =)

�(�)�(�)
�(� + =� �� =;F)�

+I*[1� � (I)]� = � �� �

Mode = �
� � 1
�+ 1

� � � 1, else 0�

A.2.2.2 BurrE�, �, � (Burr Type XII, SinghVMaddala)

8(I) =
��(I��)�

I[1 + (I��)� ]�+1
�

� (I) = 1� F�� F =
1

1 + (I��)�
�

VaR/(0) = �[(1� A)�1
� � 1]1
� �

E[0*] =
�*�(1 + =��)�(�� =��)

�(�)
� �� � = � ���

E[(0 
 I)*] =
�*�(1 + =��)�(�� =��)

�(�)
�(1 + =��� �� =��; 1� F)

+I*F�� = � �� �

Mode = �

µ
� � 1
�� + 1

¶1
�
� � � 1� else 0�

A.2.2.3 Inverse BurrE� , � , � (Dagum)

8(I) =
��(I��)�	

I[1 + (I��)� ]	+1
�

� (I) = F	 � F =
(I��)�

1 + (I��)�
�

VaR/(0) = �(A�1
	 � 1)�1
� �

E[0*] =
�*�(� + =��)�(1� =��)

�(�)
� ��� � = � ��

E[(0 
 I)*] =
�*�(� + =��)�(1� =��)

�(�)
�(� + =��� 1� =��;F)

+I*[1� F	 ]� = � ��� �

Mode = �

µ
�� � 1
� + 1

¶1
�
� �� � 1� else 0�
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A.2.3 Two-parameter distributions

A.2.3.1 ParetoE�, � (Pareto Type II, Lomax)

8(I) =
���

(I+ �)�+1
�

� (I) = 1�
µ

�

I+ �

¶�
�

VaR/(0) = �[(1� A)�1
� � 1]�

E[0*] =
�*�(= + 1)�(�� =)

�(�)
� �1 � = � ��

E[0*] =
�*=!

(�� 1) · · · (�� =)
if = is a positive integer,

E[0 
 I] =
�

�� 1

"
1�

µ
�

I+ �

¶��1#
� � 6= 1�

E[0 
 I] = �� ln
µ

�

I+ �

¶
� � = 1�

TVaR/(0) = VaR/(0) +
�(1� A)�1
�

�� 1
� � � 1�

E[(0 
 I)*] =
�*�(= + 1)�(�� =)

�(�)
�[= + 1� �� =;I�(I+ �)]

+I*
µ

�

I+ �

¶�
� all =�

Mode = 0�

C� = 2
E�?2

E� 2?2
� C� =

?E

E� 2?2
�

A.2.3.2 Inverse ParetoE� , �

8(I) =
��I	�1

(I+ �)	+1
�

� (I) =

µ
I

I+ �

¶	
�

VaR/(0) = �[A�1
	 � 1]�1�

E[0*] =
�*�(� + =)�(1� =)

�(�)
� �� � = � 1�

E[0*] =
�*(�=)!

(� � 1) · · · (� + =)
if = is a negative integer,

E[(0 
 I)*] = �*�

Z 6
(6+�)

0

J	+*�1(1� J)�*6J

+I*
�
1�

µ
I

I+ �

¶	¸
� = � �� �

Mode = �
� � 1
2
� � � 1� else 0�
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A.2.3.3 LoglogisticE�, � (Fisk)

8(I) =
�(I��)�

I[1 + (I��)� ]2
�

� (I) = F� F =
(I��)�

1 + (I��)�
�

VaR/(0) = �(A�1 � 1)�1
� �

E[0*] = �*�(1 + =��)�(1� =��)� �� � = � ��
E[(0 
 I)*] = �*�(1 + =��)�(1� =��)�(1 + =��� 1� =��;F)

+I*(1� F)� = � �� �

Mode = �

µ
� � 1
� + 1

¶1
�
� � � 1� else 0�

C� =
2 ln(3)

ln(B)� ln(A)
� C� = exp

µ
ln(B) + ln(A)

2

¶
�

A.2.3.4 ParalogisticE�, � This is a Burr distribution with � = �.

8(I) =
�2(I��)�

I[1 + (I��)�]�+1
�

� (I) = 1� F�� F =
1

1 + (I��)�
�

VaR/(0) = �[(1� A)�1
� � 1]1
��

E[0*] =
�*�(1 + =��)�(�� =��)

�(�)
� �� � = � �2�

E[(0 
 I)*] =
�*�(1 + =��)�(�� =��)

�(�)
�(1 + =��� �� =��; 1� F)

+I*F�� = � �� �

Mode = �

µ
�� 1
�2 + 1

¶1
�
� � � 1� else 0�

Starting values can use estimates from the loglogistic (use � for �) or Pareto (use
�) distributions.

A.2.3.5 Inverse paralogisticE� , � This is an inverse Burr distribution with � = � .

8(I) =
�2(I��)	

2

I[1 + (I��)	 ]	+1
�

� (I) = F	 � F =
(I��)	

1 + (I��)	
�
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VaR/(0) = �(A�1
	 � 1)�1
	 �

E[0*] =
�*�(� + =��)�(1� =��)

�(�)
� ��2 � = � ��

E[(0 
 I)*] =
�*�(� + =��)�(1� =��)

�(�)
�(� + =��� 1� =�� ;F)

+I*[1� F	 ]� = � ��2 �

Mode = � (� � 1)1
	 � � � 1� else 0�

Starting values can use estimates from the loglogistic (use � for �) or inverse Pareto
(use �) distributions.

A.3 TRANSFORMED GAMMA FAMILY

A.3.1 Three-parameter distributions

A.3.1.1 Transformed gammaE�, �, � (generalized gamma)

8(I) =
�F�7�3

I�(�)
� F = (I��)	 �

� (I) = �(�;F)�

E[0*] =
�*�(�+ =��)

�(�)
� = � ����

E[(0 
 I)*] =
�*�(�+ =��)

�(�)
�(�+ =�� ;F)

+I*[1� �(�;F)]� = � ��� �

Mode = �

µ
�� � 1
�

¶1
	
� �� � 1� else 0�

A.3.1.2 Inverse transformed gammaE�, �, � (inverse generalized gamma)

8(I) =
�F�7�3

I�(�)
� F = (��I)	 �

� (I) = 1� �(�;F)�

E[0*] =
�*�(�� =��)

�(�)
� = � ���

E[(0 
 I)*] =
�*�(�� =��)

�(�)
[1� �(�� =�� ;F)] + I*�(�;F)

=
�* (�� =�� ;F)

�(�)
+ I*�(�;F)� all =�

Mode = �

µ
�

�� + 1

¶1
	
�
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A.3.2 Two-parameter distributions

A.3.2.1 GammaE�, � (When � = @�2 and � = 2, it is a chi-square distribution
with @ degrees of freedom.)

8(I) =
(I��)�7�6
�

I�(�)
�

� (I) = �(�;I��)�

E[0*] =
�*�(�+ =)

�(�)
� = � ���

E[0*] = �*(�+ = � 1) · · ·� if = is a positive integer,

E[(0 
 I)*] =
�*�(�+ =)

�(�)
�(�+ =;I��) + I*[1� �(�;I��)]� = � ���

E[(0 
 I)*] = �(�+ 1) · · · (�+ = � 1)�*�(�+ =;I��)
+I*[1� �(�;I��)] if = is a positive integer,

%(E) = (1� �E)��, E � 1���

Mode = �(�� 1)� � � 1� else 0�

C� =
?2

E�?2
� C� =

E�?2

?
�

A.3.2.2 Inverse gammaE�, � (Vinci)

8(I) =
(��I)�7��
6

I�(�)
�

� (I) = 1� �(�; ��I)�

E[0*] =
�*�(�� =)
�(�)

� = � ��

E[0*] =
�*

(�� 1) · · · (�� =)
if = is a positive integer,

E[(0 
 I)*] =
�*�(�� =)
�(�)

[1� �(�� =; ��I)] + I*�(�; ��I)

=
�* (�� =; ��I)

�(�)
+ I*�(�; ��I)� all =�

Mode = ��(�+ 1)�

C� =
2E�?2

E�?2
� C� =

?E

E�?2
�
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A.3.2.3 WeibullE�, �

8(I) =
�(I��)	7�(6
�)

�

I
�

� (I) = 1� 7�(6
�)
�

�

VaR/(0) = �[� ln(1� A)]1
	 �

E[0*] = �*�(1 + =��)� = � �� �
E[(0 
 I)*] = �*�(1 + =��)�[1 + =�� ; (I��)	 ] + I*7�(6
�)

�

� = � �� �

Mode = �

µ
� � 1
�

¶1
	
� � � 1� else 0�

C� = exp

µ
9 ln(A)� ln(B)

9 � 1

¶
� 9 =

ln(ln(4))

ln(ln(4�3))
�

C� =
ln(ln(4))

ln(B)� ln(C�)
�

A.3.2.4 Inverse WeibullE�, � (log-Gompertz)

8(I) =
�(��I)	7�(�
6)

�

I
�

� (I) = 7�(�
6)
�

�

VaR/(0) = �(� ln A)�1
	 �

E[0*] = �*�(1� =��)� = � ��

E[(0 
 I)*] = �*�(1� =��){1� �[1� =�� ; (��I)	 ]}

+I*
h
1� 7�(�
6)

�
i
�

= �* [1� =�� ; (��I)	 ] + I*
h
1� 7�(�
6)

�
i
� all =�

Mode = �

µ
�

� + 1

¶1
	
�

C� = exp

µ
9 ln(B)� ln(A)

9 � 1

¶
� 9 =

ln(ln(4))

ln(ln(4�3))
�

C� =
ln(ln(4))

ln(C�)� ln(A)
�

A.3.3 One-parameter distributions

A.3.3.1 ExponentialE�

8(I) =
7�6
�

�
�

� (I) = 1� 7�6
��
VaR/(0) = �� ln(1� A)�

E[0*] = �*�(= + 1)� = � �1�
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E[0*] = �*=! if = is a positive integer,

E[0 
 I] = �(1� 7�6
�)�
TVaR/(0) = �� ln(1� A) + ��

E[(0 
 I)*] = �*�(= + 1)�(= + 1;I��) + I*7�6
�� = � �1�
E[(0 
 I)*] = �*=!�(= + 1;I��) + I*7�6
� if = � �1 is an integer,

%(E) = (1� �E)�1, E � 1���

Mode = 0�
C� = ?�

A.3.3.2 Inverse exponentialE�

8(I) =
�7��
6

I2
�

� (I) = 7��
6�

VaR/(0) = �(� ln A)�1�

E[0*] = �*�(1� =)� = � 1�

E[(0 
 I)*] = �* (1� =; ��I) + I*(1� 7��
6)� all =�

Mode = ��2�

C� = �B ln(3�4)�

A.4 DISTRIBUTIONS FOR LARGE LOSSES

The general form of most of these distribution has probability starting or ending at
an arbitrary location. The versions presented here all use zero for that point. The
distribution can always be shifted to start or end elsewhere.

A.4.1 Extreme value distributions

A.4.1.1 GumbelE�,� (
 can be negative)

8(I) =
1

�
exp(�J) exp [� exp(�J)] � J =

I� 

�
� �� � I ���

� (I) = exp [� exp (�J)] �
VaR/(0) = 
+ �[� ln(� ln A)]�

%(E) = 7�2�(1� �E)� E � 1���
E[0] = 
+ 0�57721566490153��

Var(0) =

2�2

6
�

A.4.1.2 FrechetE�, � This is the inverse Weibull distribution of Section A.3.2.4.

8(I) =
�(I��)��7�(6
�)

��

I
�

� (I) = 7�(6
�)
��
�
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VaR/(0) = �(� ln A)1
��

E[0*] = �*�(1� =��)� = � ��

E[(0 
 I)*] = �*�(1� =��){1� �[1� =��; (I��)��]}

+I*
h
1� 7�(6
�)

��
i
�

= �* [1� =��; (I��)��] + I*
h
1� 7�(6
�)

��
i
� all =�

A.4.1.3 WeibullE�, �3

8(I) = �
�(�I��)�7�(�6
�)

�

I
� I � 0�

� (I) = 7�(�6
�)
�

� I � 0�
E[0*] = (�1)*�*�(1 + =��)� = � ��� = an integer�

Mode = ��
µ
�� 1
�

¶1
�
� � � 1� else 0�

A.4.2 Generalized Pareto distributions

A.4.2.1 Generalized ParetoE�, � This is the Pareto distribution of Section A.2.3.1
with � replaced by 1�� and � replaced by ��.

� (I) = 1�
³
1 + �

I

�

´�1
�
� I � 0�

A.4.2.2 ExponentialE� This is the same as the exponential distribution of Sec-
tion A.3.3.1 and is the limiting case of the above distribution as � � 0.

A.4.2.3 ParetoE�, � This is the single-parameter Pareto distribution of Section
A.5.1.4. From the above distribution, shift the probability to start at �.

A.4.2.4 BetaE�, � This is the beta distribution of Section A.6.1.2 with 3 = 1.

A.5 OTHER DISTRIBUTIONS

A.5.1.1 LognormalE�,� (
 can be negative)

8(I) =
1

I�
�
2

exp(�K2�2) = �(K)�(�I)� K =

lnI� 

�

�

� (I) = �(K)�

3This is not the same Weibull distribution as in Section A.3.2.3. It is the negative of a Weibull
distribution.
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E[0*] = exp
¡
=
+ 1

2=
2�2
¢
�

E[(0 
 I)*] = exp
¡
=
+ 1

2=
2�2
¢
�

µ
lnI� 
� =�2

�

¶
+ I*[1� � (I)]�

Mode = exp(
� �2)�

C� =
p
ln(E)� 2 ln(?)� C
 = ln(?)� 1

2 C�
2�

A.5.1.2 Inverse GaussianE�, �

8(I) =

µ
�

2
I3

¶1
2
exp

µ
�
�K2

2I

¶
� K =

I� 




�

� (I) = �

"
K

µ
�

I

¶1
2#
+ exp

µ
2�




¶
�

"
�J
µ
�

I

¶1
2#
� J =

I+ 




�

E[0] = 
� . 3C[0] = 
3���

E[0*] =
*�1X

-=0

(= + @� 1)!
(= � @� 1)!@!


-+*

(2�)-
� = = 1� 2� � � � �

E[0 
 I] = I� 
K�

"
K

µ
�

I

¶1
2#
� 
J exp(2��
)�

"
�J
µ
�

I

¶1
2#
�

%(E) = exp

"
�




Ã
1�

r
1�

2
2

�
E

!#
, E �

�

2
2
�

C
 = ?� C� =
?3

E�?2
�

A.5.1.3 log-tEr,�,� (
 can be negative) Let 1 have a E distribution with C
degrees of freedom. Then 0 = exp(�1 + 
) has the log-E distribution. Positive
moments do not exist for this distribution. Just as the E distribution has a heav-
ier tail than the normal distribution, this distribution has a heavier tail than the
lognormal distribution.

8(I) =

�

µ
C + 1

2

¶

I�
�

C�

³C
2

´"
1 +

1

C

µ
lnI� 

�

¶2#(0+1)
2
�

� (I) = �0

µ
lnI� 

�

¶
with �0(E) the cdf of a E distribution with C df,

� (I) =



�������������

�������������

1

2
�

�

����
C

2
�
1

2
;

C

C +

µ
lnI� 

�

¶2

�

			�
� 0 � I � 7��

1�
1

2
�

�

����
C

2
�
1

2
;

C

C +

µ
lnI� 

�

¶2

�

			�
� I � 7��
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A.5.1.4 Single-parameter ParetoE�, �

8(I) =
���

I�+1
� I � ��

� (I) = 1�
µ
�

I

¶�
� I � ��

VaR/(0) = �(1� A)�1
��

E[0*] =
��*

�� =
� = � ��

E[(0 
 I)*] =
��*

�� =
�

=��

(�� =)I��*
� I � ��

TVaR/(0) =
��(1� A)�1
�

�� 1
� � � 1�

Mode = ��

C� =
?

?� �
�

Note: Although there appear to be two parameters, only � is a true parameter.
The value of � must be set in advance.

A.6 DISTRIBUTIONS WITH FINITE SUPPORT

For these two distributions, the scale parameter � is assumed known.

A.6.1.1 Generalized betaEa, b, �, �

8(I) =
�(3+ 4)

�(3)�(4)
F!(1� F)"�1

�

I
� 0 � I � �� F = (I��)	 �

� (I) = �(3� 4;F)�

E[0*] =
�*�(3+ 4)�(3+ =��)

�(3)�(3+ 4+ =��)
� = � �3��

E[(0 
 I)*] =
�*�(3+ 4)�(3+ =��)

�(3)�(3+ 4+ =��)
�(3+ =��� 4;F) + I*[1� �(3� 4;F)]�
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A.6.1.2 betaEa, b, � The case � = 1 has no special name, but is the commonly
used version of this distribution.

8(I) =
�(3+ 4)

�(3)�(4)
F!(1� F)"�1

1

I
� 0 � I � �� F = I���

� (I) = �(3� 4;F)�

E[0*] =
�*�(3+ 4)�(3+ =)

�(3)�(3+ 4+ =)
� = � �3�

E[0*] =
�*3(3+ 1) · · · (3+ = � 1)

(3+ 4)(3+ 4+ 1) · · · (3+ 4+ = � 1)
if = is a positive integer,

E[(0 
 I)*] =
�*3(3+ 1) · · · (3+ = � 1)

(3+ 4)(3+ 4+ 1) · · · (3+ 4+ = � 1)
�(3+ =� 4;F)

+I*[1� �(3� 4;F)]�

C3 =
�?2 �?E
�E� �?2

� C4 =
(�?� E)(� �?)

�E� �?2
�



Appendix B

An inventory of discrete distributions

B.1 INTRODUCTION

The 16 models presented in this appendix fall into three classes. The divisions
are based on the algorithm by which the probabilities are computed. For some of
the more familiar distributions these formulas will look di�erent from the ones you
may have learned, but they produce the same probabilities. After each name, the
parameters are given. All parameters are positive unless otherwise indicated. In
all cases, A* is the probability of observing = losses.
For nding moments, the most convenient form is to give the factorial moments.

The <th factorial moment is 
()) = E[&(&�1) · · · (&�<+1)]. We have E[& ] = 
(1)
and Var(&) = 
(2) + 
(1) � 
2(1).
The estimators presented are not intended to be useful estimators but, rather,

provide starting values for maximizing the likelihood (or other) function. For deter-
mining starting values, the following quantities are used (where @* is the observed
frequency at = [if, for the last entry, @* represents the number of observations at =

*

Loss Models: From Data to Decisions, 3rd. ed. By Stuart A. Klugman, Harry H. Panjer,
Gordon E. Willmot
Copyright c° 2008 John Wiley & Sons, Inc.
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or more, assume it was at exactly =] and @ is the sample size):

C
 =
1

@

�X

*=1

=@*� C�2 =
1

@

�X

*=1

=2@* � C
2�

When the method of moments is used to determine the starting value, a circumex
(e.g., C	) is used. For any other method, a tilde (e.g., g	) is used. When the starting
value formulas do not provide admissible parameter values, a truly crude guess is
to set the product of all 	 and � parameters equal to the sample mean and set all
other parameters equal to 1. If there are two 	 or � parameters, an easy choice is
to set each to the square root of the sample mean.
The last item presented is the probability generating function,

( (K) = E[K� ]�

B.2 THE (a, b, 0) CLASS

The distributions in this class have support on 0� 1� � � � . For this class, a particular
distribution is specied by setting A0 and then using A* = (3+ 4�=)A*�1. Specic
members are created by setting A0, 3, and 4. For any member, 
(1) = (3+4)�(1�3),
and for higher <, 
()) = (3< + 4)
()�1)�(1� 3). The variance is (3+ 4)�(1� 3)2�

B.2.1.1 PoissonE�

A0 = 7��� 3 = 0� 4 = 	�

A* =
7��	*

=!
�

E[& ] = 	� Var[& ] = 	�

C	 = C
�

( (K) = 7�(8�1)�

B.2.1.2 GeometricE�

A0 =
1

1 + �
� 3 =

�

1 + �
� 4 = 0�

A* =
�*

(1 + �)*+1
�

E[& ] = �� Var[& ] = �(1 + �)�

C� = C
�

( (K) = [1� �(K � 1)]�1�

This is a special case of the negative binomial with C = 1.
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B.2.1.3 BinomialEq,m, (0 � B � 1� ? an integer)

A0 = (1� B),� 3 = �
B

1� B
� 4 =

(?+ 1)B

1� B
�

A* =

µ
?

=

¶
B*(1� B),�*� = = 0� 1� � � � �?�

E[& ] = ?B� Var[& ] = ?B(1� B)�
CB = C
�?�

( (K) = [1 + B(K � 1)],�

B.2.1.4 Negative binomialE�, r

A0 = (1 + �)�0� 3 =
�

1 + �
� 4 =

(C � 1)�
1 + �

�

A* =
C(C + 1) · · · (C + = � 1)�*

=!(1 + �)0+*
�

E[& ] = C�� Var[& ] = C�(1 + �)�

C� =
C�2

C

� 1� CC =

C
2

C�2 � C

�

( (K) = [1� �(K � 1)]�0�

B.3 THE (a, b, 1) CLASS

To distinguish this class from the (3� 4� 0) class, the probabilities are denoted Pr(& =
=) = A�* or Pr(& = =) = A�* depending on which subclass is being represented.
For this class, A�0 is arbitrary (i.e., it is a parameter), and then A�1 or A�1 is a
specied function of the parameters 3 and 4. Subsequent probabilities are obtained
recursively as in the (3� 4� 0) class: A�* = (3 + 4�=)A�*�1, = = 2� 3� � � � , with the
same recursion for A�* There are two subclasses of this class. When discussing their
members, we often refer to the bcorrespondingc member of the (3� 4� 0) class. This
refers to the member of that class with the same values for 3 and 4. The notation A*
will continue to be used for probabilities for the corresponding (3� 4� 0) distribution.

B.3.1 The zero-truncated subclass

The members of this class have A�0 = 0, and therefore it need not be estimated.
These distributions should only be used when a value of zero is impossible. The
rst factorial moment is 
(1) = (3+4)�[(1�3)(1�A0)], where A0 is the value for the
corresponding member of the (3� 4� 0) class. For the logarithmic distribution (which
has no corresponding member), 
(1) = �� ln(1 + �). Higher factorial moments are
obtained recursively with the same formula as with the (3� 4� 0) class. The variance
is (3+ 4)[1� (3+ 4 + 1)A0]�[(1� 3)(1 � A0)]2. For those members of the subclass
that have corresponding (3� 4� 0) distributions, A�* = A*�(1� A0).
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B.3.1.1 Zero-truncated PoissonE�

A�1 =
	

7� � 1
� 3 = 0� 4 = 	�

A�* =
	*

=!(7� � 1)
�

E[& ] = 	�(1� 7��)� Var[& ] = 	[1� (	+ 1)7��]�(1� 7��)2�
g	 = ln(@C
�@1)�

( (K) =
7�8 � 1
7� � 1

�

B.3.1.2 Zero-truncated geometricE�

A�1 =
1

1 + �
� 3 =

�

1 + �
� 4 = 0�

A�* =
�*�1

(1 + �)*
�

E[& ] = 1 + �� Var[& ] = �(1 + �)�

C� = C
� 1�

( (K) =
[1� �(K � 1)]�1 � (1 + �)�1

1� (1 + �)�1
�

This is a special case of the zero-truncated negative binomial with C = 1.

B.3.1.3 LogarithmicE�

A�1 =
�

(1 + �) ln(1 + �)
� 3 =

�

1 + �
� 4 = �

�

1 + �
�

A�* =
�*

=(1 + �)* ln(1 + �)
�

E[& ] = �� ln(1 + �)� Var[& ] =
�[1 + � � �� ln(1 + �)]

ln(1 + �)
�

g� =
@C


@1
� 1 or

2(C
� 1)
C


�

( (K) = 1�
ln[1� �(K � 1)]
ln(1 + �)

�

This is a limiting case of the zero-truncated negative binomial as C � 0.
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B.3.1.4 Zero-truncated binomialEq,m, (0 � B � 1� ? an integer)

A�1 =
?(1� B),�1B
1� (1� B),

� 3 = �
B

1� B
� 4 =

(?+ 1)B

1� B
�

A�* =

¡
,
*

¢
B*(1� B),�*

1� (1� B),
� = = 1� 2� � � � �?�

E[& ] =
?B

1� (1� B),
�

Var[& ] =
?B[(1� B)� (1� B +?B)(1� B),]

[1� (1� B),]2
�

gB =
C


?
�

( (K) =
[1 + B(K � 1)], � (1� B),

1� (1� B),
�

B.3.1.5 Zero-truncated negative binomialE�, r, (r > �1, r 6= 0)

A�1 =
C�

(1 + �)0+1 � (1 + �)
� 3 =

�

1 + �
� 4 =

(C � 1)�
1 + �

�

A�* =
C(C + 1) · · · (C + = � 1)
=![(1 + �)0 � 1]

µ
�

1 + �

¶*
�

E[& ] =
C�

1� (1 + �)�0
�

. 3C[& ] =
C�[(1 + �)� (1 + � + C�)(1 + �)�0]

[1� (1 + �)�0]2
�

g� =
C�2

C

� 1� gC =

C
2

C�2 � C

�

( (K) =
[1� �(K � 1)]�0 � (1 + �)�0

1� (1 + �)�0
�

This distribution is sometimes called the extended truncated negative binomial
distribution because the parameter C can extend below 0.

B.3.2 The zero-modied subclass

A zero-modied distribution is created by starting with a truncated distribution
and then placing an arbitrary amount of probability at zero. This probability, A�0 ,
is a parameter. The remaining probabilities are adjusted accordingly. Values of A�*
can be determined from the corresponding zero-truncated distribution as A�* = (1�
A�0 )A

�
* or from the corresponding (3� 4� 0) distribution as A

�
* = (1�A�0 )A*�(1�A0).

The same recursion used for the zero-truncated subclass applies.
The mean is 1� A�0 times the mean for the corresponding zero-truncated distri-

bution. The variance is 1� A�0 times the zero-truncated variance plus A�0 (1� A�0 )
times the square of the zero-truncated mean. The probability generating function
is (� (K) = A�0 + (1� A�0 )( (K), where ( (K) is the probability generating function
for the corresponding zero-truncated distribution.
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The maximum likelihood estimator of A�0 is always the sample relative frequency
at 0.

B.4 THE COMPOUND CLASS

Members of this class are obtained by compounding one distribution with another.
That is, let & be a discrete distribution, called the primary distribution, and let
%1�%2� � � � be i.i.d. with another discrete distribution, called the secondary distri-
bution. The compound distribution is + = %1 + · · · +%� . The probabilities for
the compound distributions are found from

A* =
1

1� 380

*X

7=1

(3+ 4J�=)87A*�7

for @ = 1� 2� � � � , where 3 and 4 are the usual values for the primary distribution
(which must be a member of the (3� 4� 0) class) and 87 is A7 for the secondary
distribution. The only two primary distributions used here are Poisson (for which
A0 = exp[�	(1�80)]) and geometric (for which A0 = 1�[1+���80]). Because this
information completely describes these distributions, only the names and starting
values are given in the following subsections.
The moments can be found from the moments of the individual distributions:

E[+] = E[& ]E[% ] and Var[+] = E[& ] Var[% ] + Var[& ]E[% ]2�

The pgf is ( (K) = (primary [(secondary(K)].
In the following list, the primary distribution is always named rst. For the

rst, second, and fourth distributions, the secondary distribution is the (3� 4� 0)
class member with that name. For the third and the last three distributions (the
PoissonVETNB and its two special cases), the secondary distribution is the zero-
truncated version.

B.4.1 Some compound distributions

B.4.1.1 PoissonPbinomialE�, q,m, (0 � B � 1, ? an integer)

CB =
C�2�C
� 1
?� 1

� C	 =
C


?CB
or gB = 0�5� g	 =

2C


?
�

B.4.1.2 PoissonPPoissonE�1,�2 The parameter 	1 is for the primary Poisson
distribution, and 	2 is for the secondary Poisson distribution. This distribution is
also called the Neyman Type A.

g	1 = g	2 =
p
C
�

B.4.1.3 GeometricPextended truncated negative binomialE�1,�2, r (r > �1) The
parameter �1 is for the primary geometric distribution. The last two parameters
are for the secondary distribution, noting that for C = 0, the secondary distribution
is logarithmic. The truncated version is used so that the extension of C is available.

g�1 =
g�2 =

p
C
�
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B.4.1.4 GeometricPPoissonE�,�

g� = g	 =
p
C
�

B.4.1.5 PoissonPextended truncated negative binomialE�,�, (r > �1, r 6= 0)
When C = 0 the secondary distribution is logarithmic, resulting in the negative
binomial distribution.

gC =
C
(# � 3C�2 + 2C
)� 2(C�2 � C
)2

C
(# � 3C�2 + 2C
)� (C�2 � C
)2
� g� =

C�2 � C

C
(1 + CC)

� g	 =
C


CCC�
,

or,

gC =
C�2@1�@� C
2@0�@

(C�2 � C
2)(@0�@) ln(@0�@)� C
(C
@0�@� @1�@)
�

g� =
C�2 � C

C
(1 + CC)

� g	 =
C


CCC�

where

# =
1

@

�X

*=0

=3@* � 3C

1

@

�X

*=0

=2@* + 2C

3�

This distribution is also called the generalized PoissonAPascal.

B.4.1.6 PolyaPAeppliE�,�

C� =
C�2 � C

2C


� C	 =
C


1 + C�
�

This is a special case of the PoissonVextended truncated negative binomial with
C = 1. It is actually a PoissonVtruncated geometric.

B.4.1.7 PoissonPinverse GaussianE�,�

g	 = � ln(@0�@)� g� =
4(C
� C	)

C

�

This is a special case of the PoissonVextended truncated negative binomial with
C = �0�5.

B.5 A HIERARCHY OF DISCRETE DISTRIBUTIONS

Table B.1 indicates which distributions are special or limiting cases of others. For
the special cases, one parameter is set equal to a constant to create the special case.
For the limiting cases, two parameters go to innity or zero in some special way.
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Table B.1 Hierarchy of discrete distributions.

Distribution Is a special case of Is a limiting case of

Poisson ZM Poisson Negative binomial,
PoissonVbinomial,
PoissonVinv. Gaussian,
PolyaVAeppli,
NeymanVA

ZT Poisson ZM Poisson ZT negative binomial
ZM Poisson ZM negative binomial
Geometric Negative binomial GeometricVPoisson

ZM geometric
ZT geometric ZT negative binomial
ZM geometric ZM negative binomial
Logarithmic ZT negative binomial
ZM logarithmic ZM negative binomial
Binomial ZM binomial
Negative binomial ZM negative binomial PoissonVETNB
PoissonVinverse Gaussian PoissonVETNB
PolyaVAeppli PoissonVETNB
NeymanVA PoissonVETNB



Appendix C

Frequency and severity relationships

Let &� be the number of losses random variable and let 0 be the severity random
variable. If there is a deductible of 6 imposed, there are two ways to modify 0.
One is to create 1 �, the amount paid per loss:

1 � =

½
0� 0 � 6�
0 � 6� 0 � 6�

In this case, the appropriate frequency distribution continues to be &�.
An alternative approach is to create 1 � , the amount paid per payment:

1 � =

½
undened� 0 � 6�
0 � 6� 0 � 6�

In this case, the frequency random variable must be altered to reect the number of
payments. Let this variable be &� . Assume that for each loss the probability is G =
1���(6) that a payment will result. Further assume that the incidence of making
a payment is independent of the number of losses. Then &� = $1+$2+ · · ·+$� ,
where $) is 0 with probability 1 � G and is 1 with probability G. Probability
generating functions yield the relationships in Table C.1.

*

Loss Models: From Data to Decisions, 3rd. ed. By Stuart A. Klugman, Harry H. Panjer,
Gordon E. Willmot
Copyright c° 2008 John Wiley & Sons, Inc.
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Table C.1 Parameter adjustments.

�� Parameters for ��

Poisson �� = (�

ZM Poisson "��
0 =

"�0 � ��� + ���� � "�0 ����

1� ���

 �� = (�

Binomial #� = (#

ZM binomial "��
0 =

"�0 � (1� #)� + (1� (#)� � "�0 (1� (#)�

1� (1� #)�
#� = (#

Negative binomial �� = (�
 $� = $

ZM neg. binomial "��
0 =

"�0 � (1 + �)�� + (1 + (�)�� � "�0 (1 + (�)��

1� (1 + �)��
�� = (�
 $� = $

ZM logarithmic "��
0 = 1� (1� "�0 ) ln(1 + (�)� ln(1 + �)
�� = (�

The geometric distribution is not presented as it is a special case of the negative
binomial with C = 1. For zero-truncated distributions, the same formulas are still
used as the distribution for &� will now be zero modied. For compound distribu-
tions, modify only the secondary distribution. For ETNB, secondary distributions
the parameter for the primary distribution is multiplied by 1 � A��

0 as obtained
in Table C.1, while the secondary distribution remains zero truncated (however,
�� = G�)�
There are occasions in which frequency data are collected that provide a model

for &� . There would have to have been a deductible 6 in place and therefore
G is available. It is possible to recover the distribution for &�, although there
is no guarantee that reversing the process will produce a legitimate probability
distribution. The solutions are the same as in Table C.1, only now G = 1�[1���(6)].
Now suppose the current frequency model is &$, which is appropriate for a

deductible of 6. Also suppose the deductible is to be changed to 6�. The new
frequency for payments is &$� and is of the same type. Then use Table C.1 with
G = [1� ��(6�)]�[1� ��(6)].



Appendix D

The recursive formula

The recursive formula is (where the frequency distribution is a member of the
(3� 4� 1) class),

8�(I) =

[A1 � (3+ 4)A0]8�(I) +
6�,P
7=1

³
3+ "7

6

´
8�(J)8�(I� J)

1� 38�(0)
,

where 8�(I) = Pr(+ = I), I = 0� 1� 2� � � � , 8�(I) = Pr(0 = I), I = 0� 1� 2� � � � ,
A0 = Pr(& = 0), and A1 = Pr(& = 1). Note that the severity distribution (0)
must place probability on nonnegative integers. The formula must be initialized
with the value of 8�(0). These values are given in Table D.1. It should be noted
that, if & is a member of the (3� 4� 0) class, A1 � (3 + 4)A0 = 0, and so the rst
term will vanish. If & is a member of the compound class, the recursion must
be run twice. The rst pass uses the secondary distribution for A0, A1, 3, and 4.
The second pass uses the output from the rst pass as 8�(I) and uses the primary
distribution for A0, A1, 3, and 4.
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728 THE RECURSIVE FORMULA

Table D.1 Starting values (�	(0)) for recursions.

Distribution �	(0)

Poisson exp[�(�0 � 1)]

Geometric [1 + �(1� �0)]�1

Binomial [1 + #(�0 � 1)]�

Negative binomial [1 + �(1� �0)]��

ZM Poisson "�0 + (1� "�0 )
exp(��0)� 1
exp(�)� 1

ZM geometric "�0 + (1� "�0 )
�0

1 + �(1� �0)

ZM binomial "�0 + (1� "�0 )
[1 + #(�0 � 1)]� � (1� #)�

1� (1� #)�

ZM negative binomial "�0 + (1� "�0 )
[1 + �(1� �0)]�� � (1 + �)��

1� (1 + �)��

ZM logarithmic "�0 + (1� "�0 )
�
1�

ln[1 + �(1� �0)]
ln(1 + �)

�



Appendix E

Discretization of the severity distrib-
ution

There are two relatively simple ways to discretize the severity distribution. One is
the method of rounding and the other is a mean-preserving method.

E.1 THE METHOD OF ROUNDING

This method has two features: All probabilities are positive and the probabilities
add to 1. Let : be the span and let 1 be the discretized version of 0. If there are
no modications, then

8) = Pr(1 = <:) = Pr
£¡
< � 1

2

¢
: � 0 �

¡
< + 1

2

¢
:
¤

= ��
£¡
< + 1

2

¢
:
¤
� ��

£¡
< � 1

2

¢
:
¤
�

The recursive formula is then used with 8�(<) = 8) . Suppose a deductible of 6,
limit of F, and coinsurance of � are to be applied. If the modications are to be
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730 DISCRETIZATION OF THE SEVERITY DISTRIBUTION

applied before the discretization, then

90 =
��(6+ :�2)� ��(6)

1� ��(6)
�

9) =
�� [6+ (< + 1�2):]� �� [6+ (< � 1�2):]

1� ��(6)
�

< = 1� � � � �
F� 6
:

� 1 �

9(3�$)
' =
1� ��(F� :�2)
1� ��(6)

�

where 9) = Pr(2 = <�:) and 2 is the modied distribution. This method does not
require that the limits be multiples of : but does require that F� 6 be a multiple
of :. This method gives the probabilities of payments per payment.
Finally, if there is truncation from above at F, change all denominators to

��(F)���(6) and also change the numerator of 9(3�$)
' to ��(F)���(F�:�2).

E.2 MEAN PRESERVING

This method ensures that the discretized distribution has the same mean as the
original severity distribution. With no modications, the discretization is

80 = 1�
E[0 
 :]

:
�

8) =
2E[0 
 <:]� E[0 
 (< � 1):]� E[0 
 (< + 1):]

:
� < = 1� 2� � � � �

For the modied distribution,

90 = 1�
E[0 
 6+ :]� E[0 
 6]

:[1� ��(6)]
�

9) =
2E[0 
 6+ <:]� E[0 
 6+ (< � 1):]� E[0 
 6+ (< + 1):]

:[1� ��(6)]
�

< = 1� � � � �
F� 6
:

� 1 �

9(3�$)
' =
E[0 
 F]� E[0 
 F� :]

:[1� ��(6)]
�

To incorporate truncation from above, change the denominators to

:[��(F)� ��(6)]

and subtract :[1� ��(F)] from the numerators of each of 90 and 9(3�$)
'.

E.3 UNDISCRETIZATION OF A DISCRETIZED DISTRIBUTION

Assume we have 90 = Pr(+ = 0), the true probability that the random variable is
zero. Let A) = Pr(+� = <:), where +� is a discretized distribution and : is the span.
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The following are approximations for the cdf and LEV of +, the true distribution
that was discretized as +�. They are all based on the assumption that + has a
uniform distribution over the interval from (< � 1

2): to (< +
1
2): for integral <. The

rst interval is from 0 to :�2, and the probability A0�90 is assumed to be uniformly
distributed over it. Let +�� be the random variable with this approximate mixed
distribution. (It is continuous, except for discrete probability 90 at zero.) The
approximate distribution function can be found by interpolation as follows. First,
let

�) = ����
£¡
< + 1

2

¢
:
¤
=

)X

(=0

A(� < = 0� 1� � � � �

Then, for I in the interval (< � 1
2): to (< +

1
2):,

����(I) = �)�1 +

Z 6

()�1
2)'
:�1A) 6E = �)�1 +

£
I�

¡
< � 1

2

¢
:
¤
:�1A)

= �)�1 +
£
I�

¡
< � 1

2

¢
:
¤
:�1(�) � �)�1)

= (1� H)�)�1 + H�) � H =
I

:
� < + 1

2 �

Because the rst interval is only half as wide, the formula for 0 � I � :�2 is

����(I) = (1� H)90 + HA0� H =
2I

:
�

It is also possible to express these formulas in terms of the discrete probabilities:

����(I) =



���

���

90 +
2I

:
[A0 � 90]� 0 � I �

:

2
�

)�1X

(=0

A( +
I� (< � 1�2):

:
A) � (< � 1

2): � I � (< +
1
2):�

With regard to the limited expected value, expressions for the rst and =th LEVs
are

E(+�� 
 I) =



������

������

I(1� 90)�
I2

:
(A0 � 90)� 0 � I �

:

2
�

:

4
(A0 � 90) +

)�1X

(=1

;:A( +
I2 � [(< � 1�2):]2

2:
A)

+I[1� ����(I)]� (< � 1
2): � I � (< +

1
2):�

and, for 0 � I �
:

2
�

E[(+�� 
 I)*] =
2I*+1

:(= + 1)
(A0 � 90) + I*[1� ����(I)]�



732 DISCRETIZATION OF THE SEVERITY DISTRIBUTION

while for (< � 1
2): � I � (< +

1
2):�

E[(+�� 
 I)*] =
(:�2)*(A0 � 90)

= + 1
+

)�1X

(=1

:*[(;+ 1
2)
*+1 � (;� 1

2)
*+1]

= + 1
A(

+
I*+1 � [(< � 1

2 ):]
*+1

:(= + 1)
A) + I

*[1� ����(I)]�



ISEG
Risk theory
Formulary

Compound distributions
S - aggregate claims

S =

NX

i=0

Xi

where {Xi}i=1,2,... are i.i.d. random variables and independent of N.

MS(r) =MN (logMX(r))

E(S) = E(N)E(X),

V (S) = E(N)V (X) + V (N)E2(X)

and

µ3[S] = µ3[N ]E
3[X] + 3Var[N ]E[X]Var[X] + E[N ]µ3(X).

NP approximation
Let FS(x) be the distribution function of S and let FZ(x) be the distribution function of

Z = (S ! µS)/!S .

Then

FZ

"
z +

"S
6
(z2 ! 1)

#
" !(z),

which is equivalent to

FS(x) " !

 
!
3

"S
+

s
9

"2S
+ 1 +

6

"S

x! µS
!S

!

1




