Convergence of Economic Sentiment Cycles in the Euro Area: a time-frequency analysis

Luís Aguiar-Conraria
lfaguiar@eeg.uminho.pt
Universidade do Minho, NIPE † and Departamento de Economia,

Manuel M. F. Martins*

mmfmartins@fep.up.pt

Universidade do Porto, Cef.up ‡ and Faculdade de Economia,

Maria Joana Soares

jsoares@math.uminho.pt

Universidade do Minho, NIPE † and Departmento de Matemática e Aplicações,

1 August 2012

Abstract

We use wavelet tools and Economic Sentiment Indicators to study the similarity and synchronization of economic cycles in the Euro Area. We assess the time-varying and frequency-varying pattern of business cycles synchronization in the Area and test the impact of the creation of the Economic and Monetary Union in 1999.

Among several results, we find that (a) EMU is associated with a significant increase in the similarity and synchronization of the economic sentiment in the Euro Area; (b) the hard-peg of its currency to the Euro led to a comparable effect on Denmark's economic sentiment after 1999, differently from what happened in the case of the UK.

Keywords: Business cycle similarity and synchronization; Economic sentiment; Euro Area; Continuous wavelet transform; Wavelet coherency; Wavelet distance; Phase-difference.

JEL Classification Numbers: C32, C49, E32, F44.

^{*} Corresponding author.

[†] NIPE – Núcleo de Investigação em Políticas Económicas – is supported by the Fundação para a Ciência e a Tecnologia (FCT), Portugal.

[‡] Cef.up – Centre for Economics and Finance at the University of Porto – is supported by the Fundação para a Ciência e a Tecnologia (FCT), Portugal.

1. Introduction

The assessment of the synchronization of business cycles in the Euro Area has received a lot of attention in the recent literature but remains an open issue (see e.g. Altavilla, 2004; Artis, Krolzig, and Toro, 2004; De Haan, Inklaar and Jong-a-Pin, 2008; Camacho, Perez-Quirós and Saiz, 2006; Furceri and Karras, 2008; Canova, Ciccarelli, and Ortega, 2009, and Mink, Jacobs and de Haan, 2012).

The relevance of the subject is twofold. At a normative level, it is one of the crucial issues for analysing the sustainability of the Economic and Monetary Union (EMU), as the synchronization of in real economic cycles is necessary for the optimality of a single monetary policy. At a positive level, it is a case-study to test the hypothesis of the endogeneity of optimum currency areas..

The lack of consensual results in the literature often arises from the use of alternative concepts of the business cycle (deviation *vs* classical cycles — see Artis, Marcellino and Proietti, 2004). Yet, it also occurs in studies that adopt the same concepts, but differ in the econometric methods for de-trending/filtering the data or for modelling the business cycle oscillations. Moreover, even when using the same concepts and methodology, disparate results often arise from different data. Overall, the literature suggests that the discrepancy in results may be related to time-varying patterns of synchronization (see e.g. Koopman and Azevedo, 2008) and that such time-variation may, moreover, differ across frequencies of oscillation (see Hallett and Richter, 2006 and 2008). Against this background, this paper fills a gap in the literature, by using a method that simultaneously considers time and frequency, allowing for the assessment of synchronization with possible time-variation in its intensity and in its lead-lags, explicitly considering the various frequencies of cyclical oscillations.

:

We use data on the Economic Sentiment Indicators (ESIs). The ESIs have at least been used once to study synchronization of business cycles in the Euro Area (see Gayer, 2007), given their highly appealing feature of mimicking the growth rate of real GDP at a monthly frequency (see e.g. Gelper and Croux, 2010). However, the advantages of a time-frequency approach have not yet been explored with this valuable data-set.

So far, the analyses of the synchronization of business cycles in the Euro Area that have explored time-frequency techniques have looked either at quarterly data — namely real

GDP (Crowley, Maraun and Mayes, 2006; Hallett and Richter, 2008, 2006, 2004b; Wozniak and Paczynski, 2007; and Rua, 2010) — or at monthly data that account only for a part of overall economic activity — namely industrial production (Aguiar-Conraria and Soares, 2011a).

In this paper, we uncover the time-varying patterns of convergence of business cycles in the Euro Area at various frequencies, with data that are rich in the double sense that they effectively proxy for the growth rate of real GDP and are available monthly since the mid-1980s. In particular, the periodicity and length (about 12 years before and 12 years after the creation of EMU) of our data, allows for the use of sophisticated and data-consuming econometric techniques as well as for the study of balanced subsamples corresponding to a period before and a period after EMU.

We use the continuous wavelet transform, which has recently received attention in Economics and Political Science (see e.g. Aguiar-Conraria, Magalhães and Soares, 2012), to present evidence on the similarity and synchronization of economic sentiment cycles in the Euro Area. As regards synchronization, we estimate the wavelet power spectrum of each ESI time-series, and then compute the wavelet coherency and phase difference between each country's ESI and the aggregate Euro Area's ESI. As regards similarity, we compute a wavelet distance matrix and test whether the similarity between the wavelet transforms of the ESIs of all pairs of countries and of each country and the Euro Area is statistically significant. To look more precisely at the impact of EMU, we split the sample at 1999, and compute a wavelet dissimilarity matrix for both the pre-EMU and the post-EMU period. Taken together, our measures of similarity and synchronization provide comprehensive evidence on the convergence of economic sentiment cycles along time for various frequencies. Although homonymous, they differ from the indicators defined by Mink, Jacobs and de Haan (2012) in the time-domain, which relate synchronization to the sign of output gaps and similarity to their amplitude. In our paper, synchronization assesses the co-movement of economic sentiments along time at various frequencies, including their leads and lags; and similarity assesses the resemblance, for the relevant cyclical frequencies, between the time-frequency representation of economic sentiments.¹

¹ As pointed out by a referee, our wavelet distance measure (which equals zero for time-series featuring a perfect positive co-movement across frequencies) is larger for independent time-series than for time-series with a negative co-movement. However, as will be shown below, there are no significant episodes

Given the availability of data, we consider a Euro-10 aggregate Euro Area, comprised of the 11 founding-members, except Luxembourg and Finland, plus Greece. As controls, we also consider the economic sentiments of the UK and Denmark: the former allows for checking whether an exchange-rate floating regime has led to a different performance as regards synchronization of economic sentiment; the latter, allows for assessing whether a hard-peg to the Euro has had different effects on the co-movement of economic sentiment in comparison with the formal participation in EMU.

The remainder of this paper is structured as follows. Section 2 presents the data. Section 3 explains the wavelet methods. Section 4 shows and discusses the empirical results. Section 5 offers some concluding remarks.

2. Data

Data are monthly time-series of the Economic Sentiment Indicators (ESIs) published online by the Eurostat.

Each ESI is a weighted average of five confidence indicators (CIs) computed from national surveys — the industrial CI (weighting 40 per cent), the services CI (30 per cent), the consumer CI (20 per cent), the retail trade CI (5 per cent) and the construction CI (5 per cent). To guarantee comparability across countries, the European Commission has implemented a programme of harmonization of the national surveys; moreover, all CIs are standardized for an average of 100 and a standard deviation of 10 (for further details, see European Commission, 2007).

The resulting time-series of ESI mimics quite closely the year-on-year growth rate of real GDP, as can be seen in Figure 1 for the aggregate Euro Area. The contemporaneous correlation between the year-on-year growth rate of real GDP and the quarterly average of the ESI amounts to 0.87 and is clearly significant (t-statistic of 17.7). The cross-correlation between the two time-series falls rapidly to non-significant levels at lead/lags beyond 4 quarters, amounting to 0.8 at the one quarter lead or lag, 0.66 at two quarters, 0.46 at three quarters, and 0.25 at the four quarters.

In what regards EMU, we consider data from 10 Euro Area members — the 11 founding-members of EMU, except Luxembourg and Finland, plus Greece: i.e. Austria,

of negative co-movements between our economic sentiment series in the relevant cyclical frequencies, so this property of the wavelet distance turns out to be irrelevant in this paper.

Belgium, France, Germany, Greece, Ireland, Italy, Netherlands, Portugal and Spain. Out of the current 17 EMU members, we seven countries because their ESI time-series are either too short or include only a very limited part of the 5 survey-based confidence indicators during a large part of the sample.

Throughout 1985-2010, the aggregate real GDPs of the 10 members of the Euro Area that we use as reference represents about 97 per cent of the aggregate real GDP of the 17 countries that currently make up the Euro Area. Hence, our aggregate Euro-10 Area may be comfortably seen as a very good proxy for the whole Euro Area.

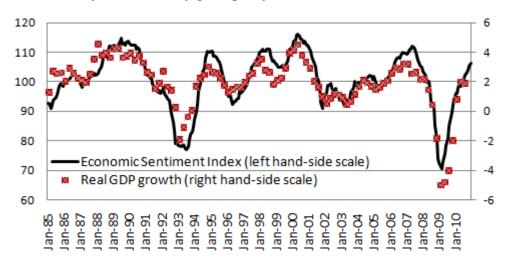


Figure 1: Economic Sentiment Index vs GDP growth, Euro Area 1985:1-2010:12

Furthermore, we consider two non-EMU countries, for which there is a satisfactory amount of data and may be used as controls, in that one has had a *de facto* hard-peg to the euro — Denmark — while the other has had a floating exchange rate against the euro — the United Kingdom.²

We focus on the sample period 1987:4-2010:12 because data for Spain begins only in 1987:4.

In the case of Ireland, the publication of confidence indicators and of the ESI has been discontinued since 2008:5, due to the unavailability of such official data. To fill the gap, we use the Consumer Sentiment Index (CSI) computed and published jointly by the Economic and Social Research Institute (ESRI) and the KBC Bank Ireland.³

_

² Sweden has not been considered because its ESI is entirely based on the building sector survey until 1995:12 and includes values for the whole 5 surveys only since 1996:8.

³ Available at http://www.esri.ie/irish_economy/consumer_sentiment/ (accessed March 2011). We thank Comarc O'Sullivan from ESRI for providing the historic time-series of the CSI, for 1996:2-2010:12. The

We have computed the aggregate Euro Area ESI for our 10 member states Euro Area (EA-10) from the individual countries' ESIs, using as weights the share of each country in the aggregate EA-10 real GDP. For consistency with the sources of the European Commission, we have used real GDP data from the AMECO database, except for Germany 1985-1990, where we have used a OECD real GDP time series (with a consistent base year) that includes estimates for Eastern Germany GDP.⁴ For the sample period we focus on, the resulting EA-10 ESI has a correlation of 99.7 percent with the Euro Area ESI computed by the European Commission, has an identical average (100.9) and a quite close standard deviation (8.7 vs 9.7).

Assessing the convergence of the economic sentiment in the UK and Denmark, on the one hand, and the Euro Area, on the other hand, involves those countries' ESIs and the EA-10 ESI. Assessing the convergence between each of the 10 member-states and the Euro Area, differently, requires the computation of the ESI for a notional Euro Area that excludes each country in turn, as we are interested in checking the co-movement of each country's economic sentiment and the rest of the EA-10. Accordingly, we used the described method to compute ten time-series of EA-9 ESIs.

3. Wavelets

Wavelet analysis performs the estimation of the spectral characteristics of a time-series as a function of time, revealing how the different periodic components of a particular time-series evolve over time. While in spectral analysis we break down a time-series into sines and cosines of different frequencies and infinite duration in time, the wavelet transform expands the time-series into shifted and scaled versions of a function that has limited spectral band and limited duration in time. The technically inclined reader is referred to Aguiar-Conraria and Soares (2011b), who offer a detailed description on the mathematics of wavelets. For a detailed intuitive explanation, we refer the reader to Aguiar-Conraria, Magalhães and Soares (2012).

CSI has a correlation of 84 per cent with the ESI in the overlapping sample (1996:2-2008:4), which makes it a strong proxy for the ESI. After due standardization for an average of 100 and a standard deviation of 10 (for comparability with the ESI), we have used these data as a proxy for Ireland's ESI for 2008:5-2010:12

Adding up West and East Germany real GDP in the years before 1991 is necessary to avoid an artificially decrease in the share of Germany in the aggregate Euro Area economic sentiment before 1991. This approach to the problem of the reunification of Germany is similar to the standard practice of back chaining data from unified Germany using growth rates from West Germany for the years before 1991.

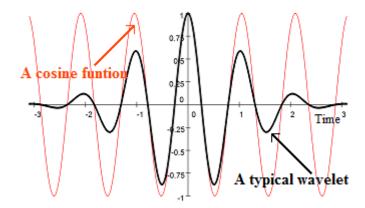


Figure 2: The typical wavelet function versus a cosine function. While the cosine function alway ranges between -1 to 1, the wavelet function approaches zero when it moves away from the center

Apart from some technical details, for a function to qualify for being a wavelet — Figure 2 —, it must have zero mean (implying that it has to wiggle up and down) and be well-localized in time, behaving like a small wave that loses its strength as it moves away from the centre. It is this property that allows, contrary to the Fourier transform, for an effective localization in both time and frequency.

Complex analytic wavelets are ideal to study oscillations. We use the most popular wavelet with these characteristics, the Morlet wavelet.

Given a time series x(t), its continuous wavelet transform (CWT) with respect to the wavelet is a function of two variables, $W_x(\tau, s)$:

$$W_{x}(\tau,s) = \int_{-\infty}^{\infty} x(t) \frac{1}{\sqrt{s}} \bar{\varphi}\left(\frac{t-\tau}{s}\right) dt,$$

where the bar denotes complex conjugation, s is a scaling or dilation factor that controls the width of the wavelet and τ is a translation parameter controlling the location of the wavelet. With our wavelet choice, there is an inverse relation between wavelet scales and frequencies, $f \approx 1/s$, greatly simplifying the interpretation of the empirical results.

In analogy with the Fourier case, the wavelet power spectrum is defined as

$$WPS_{x}(\tau,s) = |W_{x}(\tau,s)|^{2}.$$

This gives us a measure of the variance distribution of the time-series in the time-scale/frequency plane. To see how this works, check Figure 3, which shows the wavelet power spectrum of a time-series with a 4 year cycle in the first half of the sample, which is replaced by a 6 year cycle in the second half.

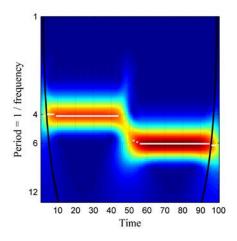


Figure 3: The wavelet power spectrum

Our wavelet figures throughout the paper depict the power at each time-frequency region associating colder colours (in the extreme, blue) with low power and hotter colours (in the extreme, red) with high power. The white lines show the maxima of the undulations of the wavelet power spectrum, therefore giving a direct estimate of the cycle period. The region outside the thick black lines is called the cone of influence (COI).⁵

For convenience, in the vertical axis of the spectrum, we have converted frequencies into cyclical periods in years. The wavelet power spectrum density depicted in the picture tells us that 4 and 6-year cycles are important to explain the total variance of the time-series, respectively, in the first and second halves of the sample.

The concepts of cross wavelet power, wavelet coherency and phase-difference enable us to deal with the time-frequency dependencies between two time-series. The cross-wavelet transform of two time-series, x(t) and y(t), is defined as $W_{xy}(\tau,s) = Wx\tau,sWy\tau,s$. The cross-wavelet power of two time-series, $Wx\tau,s$, depicts the local covariance between two time-series at each time and frequency. When compared with the cross wavelet power, the wavelet coherency has the advantage of being normalized by the power spectrum of the two time-series. In analogy with the concept of coherency used in Fourier analysis, given two time-series x(t) and y(t), one defines their wavelet coherency:

$$R_{xy}(\tau,s) = \frac{\left|s(w_{xy}(\tau,s))\right|}{\sqrt{\left|s(w_{xx}(\tau,s))s(w_{yy}(\tau,s))\right|}},$$

⁵ In the COI, the results have to be interpreted carefully. In particular, given the algorithm we use, the wavelet power in the beginning and the end of the time-series will tend to be underestimated.

where S denotes a smoothing operator in both time and scale.

We can compute the phase of the wavelet transform of each series and thus obtain information about the possible delays of the oscillations of the two series as a function of time and frequency, by computing the phases and the phase difference. The phase is given by $\tan^{-1}(\Im(W_x(\tau,s))/\Re(W_x(\tau,s)))$ and the phase difference by $\tan^{-1}(\Im(W_{xy}(\tau,s))/\Re(W_{xy}(\tau,s)))$, where, for a given complex number z, $\Re(z)$ and $\Im(z)$ denote, respectively, its real part and imaginary part. A phase-difference of zero indicates that the time series move together at the specified frequency; a phase-difference between 0 and $\pi/2$ indicates that the series move in phase, with x leading y, while if the phase-difference is between 0 and $-\pi/2$, then it is y that is leading; see Figure 7 for the other cases.

In addition to wavelet power spectra, wavelet coherency and phase-differences, we use the measure of the dissimilarities between the wavelet transform of two time-series proposed by Aguiar-Conraria and Soares (2011a), which we now describe. We use the Singular Value Decomposition (SVD) of a matrix to focus on the common high power time-frequency regions. The first extracted components correspond to the most important common patterns between the wavelet spectra. With those, we construct leading patterns and leading vectors. Using just a few of these, say K, one can approximately reconstruct the original spectral matrices.

Then, to define a distance between the two wavelet transforms, we measure the distances from these components. As Aguiar-Conraria and Soares (2011a), to compare the wavelet spectra of countries x and y, we compute the following distance:

$$\operatorname{dist}(W_{x}, W_{y}) = \frac{\sum_{k=1}^{K} \sigma_{k}^{2} [d(\mathbf{l}_{x}^{k}, \mathbf{l}_{y}^{k}) + d(\mathbf{u}_{x}^{k}, \mathbf{u}_{y}^{k})]}{\sum_{k=1}^{K} \sigma_{k}^{2}}$$
(1)

In the above formula, \mathbf{l}_x^k and \mathbf{l}_y^k are the leading patterns, \mathbf{u}_x^k and \mathbf{u}_y^k the singular vectors and σ_k the singular values. We compute the distance between two vectors by measuring the angle between each pair of corresponding segments, defined by the consecutive points of the two vectors, and take the mean of these values.

The above distance is computed for each pair of countries and, with this information, we can then fill a matrix of distances. The closer to zero our measure of distance is, the more similar are the wavelet transforms of x(t) and y(t).

4. Results: how far apart are the Euro countries

For a first glance at the data, in Figure 4 we show the EA-10 ESI time series and its wavelet power spectrum (the variance of the series at each time-frequency locus). Because we want to focus our analysis on business cycle frequencies, we remove short-run noise using a wavelet-based filter and we estimate the wavelet power spectra between 1.5 and 8 years frequencies. The interpretation of the wavelet power spectrum is similar to the one provided for Figure 3. However, in this case, we also added information on the statistical significance of the power spectrum. The dark lines represent regions of statistically significant powers at 5 per cent.⁶

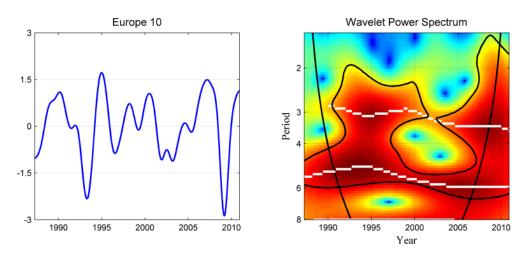


Figure 4: EA-10 Economic Sentiment Index 1987:4-2010:12

The left-hand side chart shows that, in the EA-10, economic sentiment has fluctuated less from 1997 to 2007 than in the beginning and in the final part of the sample period (the well-known 1993 recession and 2008 financial and economic crisis, respectively). The 1997-2007 low-volatility era appears in the right-hand side chart as a reduction of the area of significant variance during that period, clearly seen in the hole for cycles of period between 3.5 and 5 years, and also somewhat in the loss of significance of the spectrum for cycles of period between 2 and 3 years between 2000 and 2007.

The sharp fluctuations of the ESI in the early 1990s and in the end of the 2000s show up in the wavelet power spectrum very clearly, as sizeable peaks of energy. In the first episode, those peaks occur at cycles with a period of 3 years (around 1995) as well as at cycles with a period of 5 years (extensively between 1992 and 1997). In the second

_

⁶ Throughout the paper, to perform significance tests of wavelet measures we fit an ARMA (1,1) model and construct new samples by drawing errors from a Gaussian distribution with a variance equal to that of the estimated error terms. For each time-series (or pair of time-series) we perform the exercise 5000 times, and then extract the critical values.

episode they look somehow more concentrated in cycles of a 3 year period, but one should not over-emphasize the reading of these results as the spectrum is under the cone of influence since 2007 for cycles with longer duration.

The wavelet spectrum detects very clearly (which the time-domain chart does not) that the fluctuations of the EA-10 ESI series develop along two strong cycles throughout most of the sample. In fact, the white stripes in the spectrum indicate that there are two maxima of power, one corresponding to cycles with a period around 3 years and the other two cycles with a period slightly below 6 years; furthermore, they indicate that the smaller cycles have become slightly longer during the early 2000s, to a period around 3.5 years; and that the larger cycles had in fact a 5 years period until 1995, then changing to a longer cycle until settling at a 6 years period cycle since 2000. For the sake of saving space, we do not present the wavelet power spectra of the individual countries.⁷

For most of the countries, their overall pattern is close to that of the EA-10 spectrum depicted in Figure 4, and discussing the differences would require a very cumbersome description of details. The power spectra that differ the most from that of the EA-10 are those of Greece, the Netherlands, Portugal, Denmark and the UK. In the case of Greece, the two main cycles present in Figure 4 are only significant in the second half of the sample, which is especially clear for the shorter one. In the case of Portugal, the 6 year cycle is clear only after 2000, following a period between 1995 and 2000 when a 5 years cycle became significant and gradually became longer. In the United Kingdom the 3 year cycle only appears after 1995 and the 6 year cycle seems to become shorter and to vanish after 2007. In Denmark, the 3 year cycle appears only after 1990 and the 6 years cycle only since 1995; moreover, at the end of the sample period, as the shorter cycle became longer and the longer one became shorter, they seemed to be converging to a single 4 year cycle. The Netherlands is the only country in which the 3 year cycle seemingly disappears in the beginning of the 2000s, to reappear again after 2005.

4.1. Wavelet distances

In this subsection we perform a first step in the assessment of the co-movement between the ESIs of the 12 European countries in our sample as well as between each country

-

⁷ These, as all data, codes ,and a MatLab toolbox that we wrote, needed to replicate our results, are available at http://sites.google.com/site/aguiarconraria/joanasoares-wavelets.

and the aggregate EA-10 (duly excluding the country, if a member of EMU). Based on formula (1), we compute a measure of distance between the wavelet transform of each ESI series. For the distance to be zero, the ESI series must share their high power regions and their phases must be exactly aligned. Simulations show that even if the phases are not aligned, if everything else is similar, the distance will still be much closer to zero than the distance between two independent processes. However, in our data there are no episodes of statistically significant out of phase co-movements, and so we are able to consider this distance as an effective measure of the ESI cycles similarities. Later on, we rely on coherency and phase-difference analysis to study synchronization, complementing this analysis.

Table 1: Wavelet distances (full sample)

	Be	Ge	Ir	Gr	Sp	Fr	it	Ne	Au	Pt	Dk	UK
Belgium		0.14	0.19	0.37	0.21	0.13	0.23	0.19	0.14	0.27	0.24	0.38
Germany	0.14		0.20	0.41	0.21	0.16	0.26	0.27	0.17	0.29	0.35	0.43
Ireland	0.19	0.20		0.36	0.26	0.15	0.18	0.24	0.27	0.36	0.34	0.43
Greece	0.37	0.41	0.36		0.44	0.34	0.34	0.33	0.41	0.52	0.43	0.34
Spain	0.21	0.21	0.26	0.44		0.22	0.22	0.25	0.18	0.33	0.29	0.47
France	0.13	0.16	0.15	0.34	0.22		0.16	0.23	0.17	0.35	0.27	0.40
Italy	0.23	0.26	0.18	0.34	0.22	0.16		0.21	0.26	0.45	0.30	0.35
Netherlands	0.19	0.27	0.24	0.33	0.25	0.23	0.21		0.25	0.36	0.24	0.34
Austria	0.14	0.17	0.27	0.41	0.18	0.17	0.26	0.25		0.30	0.32	0.40
Portugal	0.27	0.29	0.36	0.52	0.33	0.35	0.45	0.36	0.30		0.31	0.36
Denmark	0.24	0.35	0.34	0.43	0.29	0.27	0.30	0.24	0.32	0.31		0.38
Unit. Kingdom	0.38	0.43	0.43	0.34	0.47	0.40	0.35	0.34	0.40	0.36	0.38	
Europe 10	0.11	0.18	0.16	0.36	0.16	0.11	0.19	0.22	0.15	0.32	0.27	0.42
						p<(0.01	p<0.05		p<0.10		

We first present a distance matrix computed for the whole sample, in Table 1. A first conclusion is that the ESIs of Greece and the UK are the most dissimilar with those of the other European countries, and these countries record no significant bilateral distance even at the 10 percent level. While that could be expected for the case of the UK — an EU member that opted out of EMU in part because of diachronic business cycles — it confirms the conventional wisdom that the inclusion of Greece in EMU has been somehow questionable, as regards cyclical convergence. A second conclusion is that the ESI of Portugal is also rather distant from most countries' ESIs. As the table is further tracked for low levels of similarity of ESIs, Denmark shows up next: it has only 3 bilateral distances low enough to be significant at the 5 per cent level.

In the last row of Table 1 we present the distance between the wavelet transform of each country's ESI and that of the aggregate EA-10 ESI (with exclusion of the country if a member of EMU). The distances are small enough to infer that cycles are similar at 1 per cent level for Belgium, Germany, Ireland, Spain, France, Italy and Austria. The Netherlands may yet be included in this core of countries, as its distance is significant at the 5 per cent level. Among the countries that adhered to EMU, only Portugal and Greece have ESIs that fail to be considered similar to the EA-10 even at 10 per cent of significance. Of the two control countries, the one that has had its currency hard-pegged to the Euro (Denmark) is significant at the 10 per cent, while the one that has had its currency floating (the UK) is not statistically similar to the EA-10.

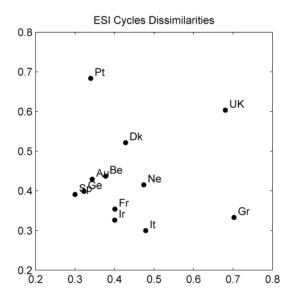


Figure 5: Multidimensional scaling map (full sample)

To provide a more intuitive reading of Table 1, in Figure 5 we follow Camacho, Perez-Quirós and Saiz (2006) and summarize the distances in a two-dimensional map. In short, the distance matrix is reduced to a two-column matrix that positions each country in two orthogonal axes, and then each country is accordingly placed on a plane.

Figure 5 confirms that when time and frequency are considered together, the ESIs of Portugal, Greece and the UK are quite dissimilar from the remaining European countries. The figure also confirms that economic sentiment in Denmark has co-moved weakly with economic sentiment in the other European countries. It further informs that there has been a core of countries as regards economic sentiment fluctuations formed by Germany, Austria, Belgium, Spain, the Netherlands, France, Ireland and Italy. This core may be divided into two sub-groups, one centred around Germany (including Austria,

Belgium and Spain) and the other more concentrated around France (including Ireland and Italy), while the Netherlands seems to be in the middle of these sub-groups.

We now split the sample in two sub-samples of the same size, the first almost exactly corresponding to the period before the creation of EMU (1987:04-1999:02) and the second almost exactly corresponding to the period after the beginning of EMU (1999:02-2010:12). We compute the wavelet distances for each period and check whether the results indicate any effect of EMU on the similarity of economic sentiment across Europe.⁸

The comparison between panel A (pre-Euro period) and panel B (post-Euro period) of Table 2 is striking. It indicates that the creation of EMU in 1999 led to a fall in the distance between the wavelet transform of the national ESIs and of the EA-10 ESI for all countries, except Spain, France and Austria, where it remained very low and kept on suggesting similarity at 1 per cent (5 per cent in the case of Spain). That fall was not uniform and changed the overall picture. Before EMU, only the ESIs of Belgium, Germany, France and Austria were similar at 1 per cent of significance and those of Ireland, Spain and Italy at 5 per cent level.

The time-frequency patterns of the ESIs of Greece, Portugal and the Netherlands were not similar to those of the rest of Europe. The same occurred, as expected, for the non-members Denmark and the UK.

After EMU, the ESIs of all the members of the EA-10 got closer to the aggregate EA-10 ESI in the time-frequency domain at least at the 5 per cent level (remaining significant at the 1 per cent level for Belgium, Germany, France, and Austria, which emerges clearly as the hard core of the EA-10). Cycles of the EA-10 and Denmark have also become more similar. The other control country, the UK, kept a dissimilar cycle. Hence, we conclude that (i) participation in EMU overall led to higher levels of similarity between the national ESIs and the EA-10 ESI, and (ii) hard-pegging the national currency to the Euro led Denmark to a comparable effect, not seen in the case of the UK given its floating exchange regime.

-

⁸ It is important that the sample is split exactly in half, so that the COI distortions affect both sides exactly in the same way avoiding possible biases in the results.

Table 2: Wavelet distances before and after the Euro

	Be	Ge	lr	Gr	Sp	Fr	It	Ne	Au	Pt	Dk	UK
Belgium		0.12	0.16	0.36	0.13	0.11	0.17	0.19	0.09	0.30	0.25	0.33
Germany	0.12		0.19	0.40	0.17	0.11	0.19	0.27	0.09	0.33	0.39	0.35
Ireland	0.16	0.19		0.33	0.21	0.14	0.15	0.21	0.20	0.36	0.34	0.27
Greece	0.36	0.40	0.33		0.36	0.41	0.39	0.21	0.43	0.46	0.45	0.30
Spain	0.13	0.17	0.21	0.36		0.17	0.16	0.22	0.15	0.27	0.22	0.30
France	0.11	0.11	0.14	0.41	0.17		0.11	0.27	0.11	0.36	0.33	0.34
Italy	0.17	0.19	0.15	0.39	0.16	0.11		0.27	0.20	0.34	0.31	0.27
Netherlands	0.19	0.27	0.21	0.21	0.22	0.27	0.27		0.26	0.35	0.25	0.27
Austria	0.09	0.09	0.20	0.43	0.15	0.11	0.20	0.26		0.28	0.35	0.36
Portugal	0.30	0.33	0.36	0.46	0.27	0.36	0.34	0.35	0.28		0.26	0.48
Denmark	0.25	0.39	0.34	0.45	0.22	0.33	0.31	0.25	0.35	0.26		0.32
Unit. Kingdom	0.33	0.35	0.27	0.30	0.30	0.34	0.27	0.27	0.36	0.48	0.32	
Europe 10	0.09	0.12	0.15	0.39	0.14	0.07	0.15	0.25	0.10	0.31	0.30	0.33
FIRST HALF OF THE SAMPLE (PRE-EURO)						p<0.01 p<0.05			0.05	p<0.10		
	Be	Ge	lr	Gr	Sp	Fr	It	Ne	Au	Pt	Dk	UK
Belgium		0.09	0.15	0.15	0.19	0.09	0.15	0.16	0.13	0.17	0.18	0.16
Germany	0.09		0.14	0.14	0.16	0.10	0.14	0.17	0.12	0.14	0.20	0.22
Ireland	0.15	0.14		0.14	0.25	0.10	0.17	0.18	0.23	0.16	0.21	0.33
Greece	0.15	0.14	0.14		0.26	0.15	0.21	0.17	0.21	0.19	0.25	0.29
Spain	0.19	0.16	0.25	0.26		0.19	0.15	0.21	0.13	0.24	0.26	0.28
France	0.09	0.10	0.10	0.15	0.19		0.14	0.19	0.17	0.16	0.16	0.22
Italy	0.15	0.14	0.17	0.21	0.15	0.14		0.13	0.17	0.23	0.15	0.27
Netherlands	0.16	0.17	0.18	0.17	0.21	0.19	0.13		0.20	0.21	0.16	0.23
Austria	0.13	0.12	0.23	0.21	0.13	0.17	0.17	0.20		0.24	0.27	0.23
Portugal	0.17	0.14	0.16	0.19	0.24	0.16	0.23	0.21	0.24		0.26	0.16
Denmark	0.18	0.20	0.21	0.25	0.26	0.16	0.15	0.16	0.27	0.26		0.22
Delilliark	0120											
Unit. Kingdom	0.16	0.22	0.33	0.29	0.28	0.22	0.27	0.23	0.23	0.16	0.22	
	0.16	0.22 0.07	0.33		0.28 0.15			0.23	0.23	0.16 0.16	0.22	0.20

When bilateral distances are analysed, Panel A and Panel B give markedly different dynamics of the economic sentiment within the EA-10. In 1987-1999 only 13 out of the 45 bilateral distances are small enough for similarity to be significant at least at the 5 per cent level; in 1999-2010 there are 28 distances out of the 45 EA-10 bilateral distances significant at the 5 per cent level. Until 1999 there are 25 bilateral distances not significant at 10 per cent, while after 1999 there are only 9 such cases. These, after 1999, all involve Portugal, Spain, Ireland and Greece — and largely the lack of similarity among them. The mean distance among the Euro 10 countries drops from 0.24 to 0.17, a drop of almost 30%. Performing a t-test, one rejects the null of equal means with a p-value that is virtually zero.

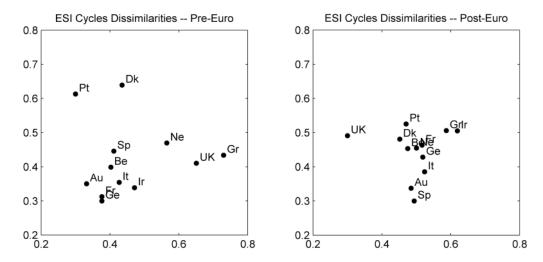


Figure 6: Multidimensional scaling maps for partial samples

As regards the control countries, a first interesting conclusion is that there is no significant similarity between economic sentiment in Denmark and in the UK, not even after 1999. In the Euro period, in turn, the ESI of Denmark became significantly similar to those of France, Italy and the Netherlands and, albeit only at 10 per cent, to those of Belgium and Germany. As expected given the distances to the EA-10 described above, the ESI of the UK is only statistically similar to two small countries. These results reinforce the conclusion that the hard-peg of its currency to the Euro led to a significant convergence of Denmark's economic sentiment to the EA-10 core countries' economic sentiment, which the UK did not record.

Figure 6 offers a more intuitive reading of Table 2, summarizing the distances in two multidimensional scaling maps for the two sub-samples. Clearly, the UK is the only country that has not become closer to the rest of Europe and Denmark is not visibly distant from core countries such as France and Belgium and is even closer to the nucleus than Portugal, Ireland and Greece.

Hence our conclusions that, when time and frequency are considered jointly, (i) EMU led, overall, to a significant convergence of economic sentiment in the EA-10, and (ii) the hard-peg of the Danish Krown to the Euro led to a comparable convergence, that did not happen in the case of the UK, given the floating regime of the British Pound, which may have immunized the UK against fluctuations in the Euro area.

4.2. Wavelet coherencies and phase-differences

In this section, we carry out a second step in the assessment of economic sentiment convergence, assessing the synchronization between the ESIs; we do so estimating the wavelet coherencies and phase-differences for all pairs formed by each individual country and the aggregate 10-country Euro Area (with exclusion of the country, if member of EMU). The main advantage of these analyses is that cross-wavelets and phase-differences allow for assessing the evolution of the co-movement in the time-frequency domain continuously along the sample period, for all relevant cycles, as well as for establishing the lead-lag relations between each ESIs. Given our focus on business cycles (1.5~8 years period), and given that we found in the wavelet power spectra a marked concentration of energy at 2 cycles — one of period 3~3.5 years and the other of period 5~6 years —, we split the phase-differences in two charts, one for cycles in the frequency band of 1.5~4.5 years and other for cycles in the frequency band of 4.5~8 years. In Figure 8 we show, for each pair formed by a country and the EA-10, the wavelet coherency and, at its right, the phase differences (in Figure 7 we provide the key to interpret the phase-differences).

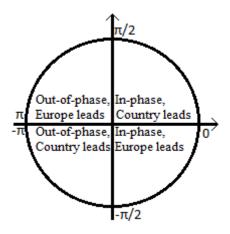


Figure 7: Phase-differences interpretation

The interpretation of our econometric results proceeds along the standard approach in similar literature (see *e.g.* Aguiar-Conraria, Martins and Soares, 2012) and may be summarised as follows. First, we check the time-frequency regions in which the coherency is statistically significant, meaning that, in those episodes, we may confidently say that there has been a significant co-movement of economic sentiments for cycles of the indicated period. Then, for the statistically significant time-frequency locations, we analyze the phase differences, to detect whether the co-movement has been positive or negative, and which sentiment was leading and lagging.

A first global conclusion from Figure 8 is that there are no significant episodes of inverse co-movements of any ESIs. In fact, in all episodes of significant coherencies the phase-differences are located between $-\pi/2$ and $\pi/2$, indicating that the ESIs are in-

phase, i.e. they co-move positively. Hence, the episodes of significant coherency detected throughout this section correspond either to episodes of synchronization, or to episodes of some lead-lag between economic sentiments that vary in the same direction.

A second global conclusion is that after 2005 all countries have large time-frequency regions — corresponding to cycles of various periods — in which there is a significant coherency between their ESIs and the EA-10 ESI. Truly, part of those regions is outside the cone of influence; anyway, this result, even if valid, seems associated not with any effect of EMU but with the recent financial and economic boom and bust.

A third level of indications to be drawn from Figure 8 relates to the overall analysis of the coherency between the national ESIs and the EA-10 ESI. Consistently with the findings of the previous section, the countries with larger regions of significant coherency of their ESIs with the EA-10 ESI throughout the whole sample are Austria, Belgium, Germany and France; these may be thought of as the hard core of the EA-10, as they had their ESIs synchronized at 1 per cent already before 1999.

The wavelet coherencies then suggest that the Netherlands, Spain and Italy also record extended areas of significant coherency. These countries, most especially the Netherlands, exhibit a more pronounced hole in coherency at the end of the 1990s and the first half of the 2000s. This may explain why the Netherlands recorded so badly as regards synchronization, in the analysis of the previous section, before 1999.

Next, the figure shows that the ESI of Ireland has had a consistently significant coherency with the EA-10 ESI for cycles of period above 5 years throughout the whole sample (while coherency at shorter cycles is much more scarce and brief).

_

⁹ Replicating these estimations for the sub-indicators of the ESI (confidence in the industry, consumers, services, retail and construction) would be an interesting extension of our analyses. However, due to heavy data problems, it is not possible to study synchronism between the whole sub-indicators of the ESI for a meaningful sample period and Euro Area aggregate. We were able to do such analysis for the Industry Sentiment (we had to exclude Ireland) and the Consumer Sentiment (we had to exclude Austria). The results (not shown, for space conservation, but available upon request to the authors) are similar to those we obtain for the ESIs.

¹⁰ Ge (2008) and Cohen and Walden (2010) reconsider the discussion of the significance testing for the wavelet, cross-wavelet power and wavelet coherency. These authors concentrate on the use of a specific wavelet (the Morlet wavelet) and, assuming a Gaussian white noise process, analytically derive the corresponding sampling distributions. As explained earlier, we follow a different strategy and rely on Monte Carlo simulations. To check for robustness of our null, an ARMA(1,1) for each country, we also considered a more general model — an ARMA(3,3) — and a nonparametric block bootstrap method, using the toolbox provided by Cazelles et al. (2007). The statistical significant regions that we found are robust to these modeling choices.

We now look at the EA-10 members that overall have recorded smaller coherencies. Portugal had an episode of significant co-movement of its ESI with the EA-10 ESI between 1992 and 1998 for cycles of period between 2 and 3.5 years, but that episode turned out to be transient; it corresponds to the well-known period of high growth and apparent real convergence with the Area members-to-be, ahead of the creation of EMU. More recently, since the mid-2000s, there seems to be significant coherencies for cycles of all periods. Finally, Greece is the EA-10 country with a clearly less synchronized economic sentiment; only for longer cycles there seems to exist some significant coherency, namely for cycles with period 6~8 years since 2002 and with period of 4~6 years since 2006.

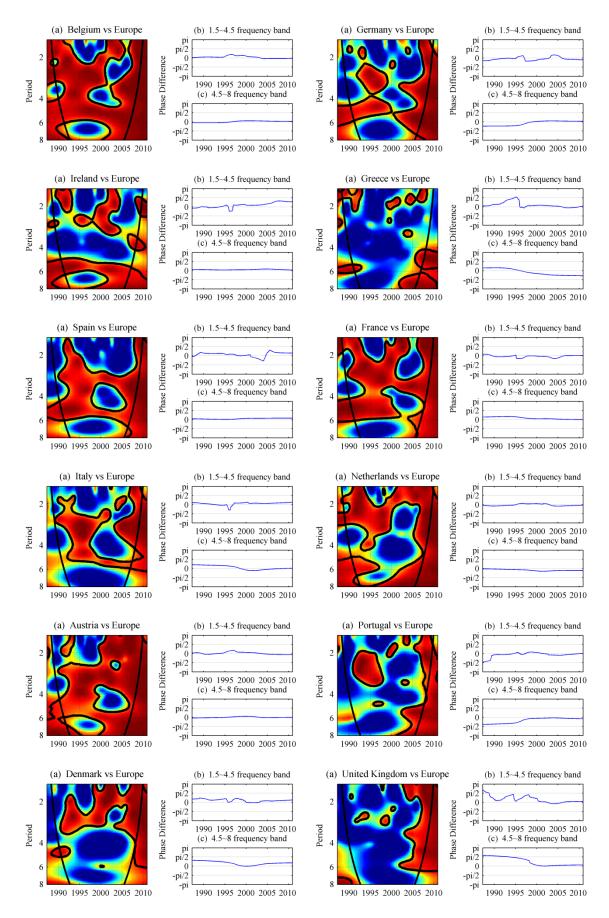


Figure 8: Wavelet coherencies and Phase-differences

We finally look at the wavelet coherencies of the two control countries, the UK and Denmark. The wavelet coherency between the UK and the EA-10 ESI shows that there hasn't been almost any significant coherency before 2005, and that the significant coherency estimated since then spreads out through cycles from a period of 1.5 to a period of 6 years. This pattern seems associated with the international boom that lasted until around 2007 and the bust that ensued; not enough to say that the UK is synchronized with the rest of Europe as we saw in the previous section. The case of Denmark is different, as there are some regions of significant coherency for cycles of period between 1.5 and 3 years since the early 1990s. After a reduction of the frequency band of significant coherency in the early 2000s, after 2005 the significance expanded to cycles of higher period, reaching the 6 years period around 2007. All in all, and consistently with the results of the previous section, the wavelet coherencies suggest that there has been some EMU effect on the co-movement of economic sentiment of Denmark with respect to the EA-10, but not of the UK. Hence, we conclude that what is necessary for economic sentiment to converge with the Euro Area is not to actually integrate EMU but merely to hard-peg the national currency to the Euro.

A fourth set of conclusions comes from the inspection of the phase-differences relative to cycles in the frequency band of 4.5~8 years. In almost all countries, those phase-differences swing at some time just before 1999, indicating a structural break in the comovement of economic sentiment associated with the creation of EMU; for most countries (Greece, Ireland and Spain are the most apparent exceptions) phase-differences fall, indicating a greater synchronization of 4.5~8 year cycles. Regarding the larger EA countries, before 1999 the EA-10 ESI led the ESI of Germany, while economic sentiment in France and Italy led the economic sentiment of the EA-10; after 1999, the ESI of Germany co-moved contemporaneously with the ESI of the aggregate EA-10, while the ESIs of France and Italy lost their leading role and started also co-moving contemporaneously with the EA-10 ESI. Hence, at the 4.5~8 year cycles, EMU led to the synchronization of business cycles among the main EMU countries.

A fifth general set of conclusions may be drawn from the phase-differences relative to cycles in the frequency band of 1.5~4.5 years. In almost all countries there is a swerve of the phase-differences at some time between 1995 and 1997, indicative of some structural break ahead of the creation of EMU (at the time when decisions on membership were taken, very much influenced by the stability of exchange parities in

the exchange-rate mechanism of the European monetary system since March 1995, and the stability of market exchange rates, especially since 1996 – see Aguiar and Martins, 2005). During this late-1990s swing in phase-differences, economic sentiment in Austria, Belgium and the Netherlands led the EA-10 sentiment, while the aggregate EA-10 economic sentiment led the ESIs of Germany, France and Italy. Then, since around 1999, the co-movement between the ESIs of most of these countries and the EA-10 became contemporaneous, *i.e.* economic sentiment became essentially synchronized in the Euro Area. An exception is another peak in Germany's phase-difference in 2004-06, suggesting a leading role for Germany in that episode, accompanied by a trough in the phase-difference of France's ESI cycles, results that we address in the next paragraph.

Finally, some very interesting conclusions may be drawn from the comparison of the phase-differences of France and Germany, the largest economies of the EA-10: for both frequency-bands analysed, these countries' phase-differences look very much like a mirror image of each other. Before 1999, when these countries' economic sentiment cycles of period 4.5~8 years were not co-moving contemporaneously, the EA-10 ESI seemingly led the ESI of Germany and has been led by the ESI of France. This lag in German economic sentiment originates from the idiosyncratic behaviour of Germany during the reunification (an expansion in 1990/91, compared with a slowdown in France) and when economic policy focused on the ensuing competitiveness problems in the late 1990s (with a delay in the 1997/99 cycle). In the 1.5~4.5 years' frequency band, the ESI cycles of both countries were broadly synchronized with the EA-10 ESIs, except for two episodes. Firstly, between 1995 and 1997 there is a trough in the phasedifference of France, implying that the ESI cycles of France were led by those of Germany and the EA-10; then, between 1997 and 1999, it is Germany's ESI phasedifference that records a drop, implying that the French ESI cycles of 1,5~4,5 years led those of Germany,. Secondly, the upswing in Germany's phase-difference in 2004-06, which indicates a leading role of Germany relative to EA-10, coincides with a downswing in the phase-difference of France that indicates a leading role of the EA-10 cycle over the 1.5~4.5 years cycle of the ESI of France (developments that reflect the strong expansion in Germany 2005/06 resulting from the competitiveness-enhancing policies of the previous years and the high growth of exports associated to the international boom ahead of the financial crisis). Overall, we conclude that before 1999 there have been episodes in which France and Germany have alternated as leaders of

economic sentiment in the Euro Area, because of the German reunification and of the inexistence of EMU, while after 1999 the co-movements of economic sentiment in the two larger Euro Area countries became essentially synchronized, as a result of monetary and economic integration.

5. Concluding remarks

In this paper we used wavelet tools, to study the time and frequency-varying patterns of similarity and synchronization of business cycles in the Euro Area, using data from Economic Sentiment Indexes (ESIs). Jointly, our similarity and synchronization measures provide comprehensive evidence about the convergence of economic sentiment in the Euro Area. We have focused on an EA-10 aggregate and its members Austria, Belgium, France, Germany, Greece, Ireland, Italy, Spain, the Netherlands and Portugal, and have used Denmark and the UK as controls, given their contrasting exchange-rate regimes.

We provide a novel combination of data and methods allowing for a set of new results and conclusions, including the assessment of the possible effects of the creation of EMU at 1999 on the co-movement of economic sentiment across the Euro Area. We have found a number of empirical results, from which we highlight a few.

For the whole sample, economic sentiment has been significantly similar between a core of EA-10 countries formed by Germany, Austria, Belgium, Spain — a "German pole" —, France, Italy, Ireland — a "French pole" — and the Netherlands. Dissimilarities (at the 5 per cent level) of the economic sentiments of Portugal, Greece and Denmark in 1987-2010 are explained by their behaviour in the period before EMU. In fact, in 1999-2010 all EA-10 countries and Denmark have had ESIs similar to the aggregate EA-10. Moreover, bilateral distances have overall fallen markedly within the EA-10-plus-Denmark area after 1999. In contrast, no comparable fall in distances of the ESIs occurred after 1999 for the UK, either with regard to the EA-10 or with regard to most individual countries.

In addition to similarity, economic sentiment cycles became overall more coherent and synchronized after 1999, for the EA-10 countries as well as for Denmark, but not in the case of the UK. Indeed, in the case of cycles of periods between 1,5 and 4,5 years, the increase in coherence and synchronization has occurred somewhat before the actual

beginning of the EA, at around 1995/97 when the decision to launch the EA has become certain.

Hence, we clearly detect an EMU effect of increased similarity and synchronization of the economic sentiment. The difference of results for Denmark and the UK led us to conclude that the type of exchange rate regime plays a crucial role in explaining these effects.

The two larger economies of the Euro Area, Germany and France, have had alternated roles as leaders of economic sentiment in the Euro Area until 1999, due to the immediate and mediate effects of German reunification at a time when integration was still under completion. After the outset of EMU the co-movement has overall become contemporaneous, *i.e.* economic sentiments became mostly synchronized. At longer cycles (4.5~8 years) the French ESI has led the EA-10 and German ESI until 1999, and then the ESIs turned to a simultaneous co-movement; at shorter cycles (1.5~4.5 years) the ESI cycles of both countries co-moved simultaneously with the EA-10 ESI except for three episodes: in 1995/7, the oscillations of economic sentiment in Germany led those of France; in 1997/99, cycles of economic sentiment in France anticipated the cycles of sentiment in Germany; in 2004/6, the German economic sentiment anticipated both the aggregate EA-10 and the French ESI.

Acknowledgments

We are grateful to the Editor and two anonymous referees for very useful comments and suggestions.

References

- Aguiar, Alvaro, and Manuel M. F. Martins. (2005) "The Preferences of the Euro Area Monetary Policymaker," *Journal of Common Market Studies*, Vol. 43, No. 2, June, pp. 221-250.
- Aguiar-Conraria, Luís, Manuel M. F. Martins, and Maria J. Soares (2012), "The Yield Curve and the Macro-economy across Time and Frequencies", *Journal of Economic Dynamics and Control*, 2012, http://dx.doi.org/10.1016/j.jedc.2012.05.008
- Aguiar-Conraria, Luís and Maria J. Soares (2011a), "Business cycle synchronization and the Euro: a wavelet analysis", *Journal of Macroeconomics*, Vol. 33, No. 3, pp. 477-489.
- Aguiar-Conraria, Luís, and Maria J. Soares (2011b), "The continuous wavelet transform: a primer", NIPE WP 16/2011.
- Aguiar-Conraria, Luís, Pedro C. Magalhães and Maria J. Soares (2012), "Cycles in Politics: Wavelet Analysis of Political Time-Series", *The American Journal of Political Science*, 56 (2), pp. 500-518.
- Altavilla, Carlo (2004), "Do EMU Members Share the Same Business Cycle?", *Journal of Common Market Studies*, Vol. 42, No. 5, pp. 869-896.
- Artis, Michael J., Massimiliano Marcellino and Tommaso Proietti (2004), "Dating the Euro Area Business Cycle", in Lucrezia Reichlin (Ed.) The Euro Area Business Cycle: Stylized facts and Measurement Issues. London, Centre for Economic Policy Research (CEPR), pp. 7-34.
- Artis, Michael J., Hans-Martin Krolzig, and Juan Toro (2004), "The European Business Cycle", *Oxford Economic Papers*, Vol. 56, No. 1, pp. 1-44.
- Camacho, Maximo, Gabriel Perez-Quirós, and Lorena Saiz (2006), "Are European Business Cycles close enough to be just one?", *Journal of Economics Dynamics and Control*, Vol. 30, No. 9-10, September-October, pp. 1687—1706.
- Canova, Fabio, Matteo Ciccarelli, and Eva Ortega (2009), "Do institutional changes affect business cycles? Evidence from Europe", Banco de España Working Papers No. 0921.
- Cazelles, Bernard, Mario Chavez, Guillaume Magny, Jean-Francois Guégan and Simon Hales, (2007), "Time-dependent spectral analysis of epidemiological time-series with wavelets", *Journal of the Royal Society Interface*, Vol. 4, pp. 625--36.
- Cohen Ed, Andrew Walden, (2010), "A Statistical Study of Temporally Smoothed Wavelet Coherence", *IEEE Transactions of Signal Processing*, Vol. 58 (6), pp. 2964-2973.
- Crowley, Patrick M., Douglas Maraun and David Mayes (2006) "How hard is the euro area core? An evaluation of growth cycles using wavelet analysis", Bank of Finland Research Discussion Papers No. 18.

- De Haan, Jakob, Robert Inklaar and Richard Jong-a-Pin (2008), "Will Business Cycle in the Euro Area Converge? A Critical Survey of Empirical Research", *Journal of Economic Surveys*, Vol. 22, No. 2, pp. 234-273.
- European Commission (2007), "The joint harmonised EU programme of business and consumer survey user guide (updated 4 July 2007)", Directorate-Generale for Economic and Financial Affairs, available at (accessed April 2010)
 - http://ec.europa.eu/economy_finance/db_indicators/surveys/documents/userguide_en.pdf.
- Furceri, Davide and Georgios Karras (2008), "Business-cycle synchronization in the EMU", *Applied Economics*, Vol. 40, No. 12, pp. 1491-1501.
- Gayer, Christian (2007), "A fresh look at business cycle synchronization in the euro area", European Economy Economic Paper No. 287, September.
- Ge, Zhongfu (2008). "Significance tests for the wavelet cross spectrum and wavelet linear coherence", *Annals of Geophysics*, vol. 26, pp. 3819--3829.
- Gelper, Sarah and Christophe Croux (2010), "On the Construction of the European Economic Sentiment Indicator", *Oxford Bulletin of Economics and Statistics*, Vol. 72, No. 1, 47-61.
- Hallett, Andrew H. and Christian Richter (2008), "Have the Eurozone economies converged on a common European cycle?", *International Economics and Economic Policy*, Vol. 5, No. 1-2, July, 71-101.
- Hallett, Andrew H. and Christian Richter (2006), "Measuring the Degree of Convergence among European Business Cycles", *Computational Economics*, Vol. 27, No. 2-3, 229-259.
- Hallett, Andrew H. and Christian Richter (2004a), "Spectral Analysis as a Tool for Financial Policy: An Analysis of the Short-End of the British Term Structure", *Computational Economics*, Vol. 23, No. 3, 271-288.
- Hallett, Andrew H. and Christian Richter (2004b), "A Time-Frequency Analysis of the Coherences of the US Business Cycle and the European Business Cycle", CEPR Discussion Paper No. 4751, November.
- Koopman, Siem J. and João V. E. Azevedo (2008), "Measuring Synchronization and Convergence of Business Cycles for the Euro area, UK and US", *Oxford Bulletin of Economics and Statistics*, Vol. 70, No. 1, 23-51.
- Mink, Mark, Jan P.A.M. Jacobs, and Jakob de Haan (2012), "Measuring coherence of output gaps with an application to the euro area", *Oxford Economic Papers*, Vol. 64, No. 2, 217–236.
- Rua, António (2010), "Measuring comovement in the time—frequency space", *Journal of Macroeconomics*, Vol. 32, No. 2, 685—691.

Wozniak, Przemyslaw and Woivciech Paczynski (2007), "Business Cycle Coherence between the Euro Area and the EU New Member States: a Time-Frequency Analysis", CASE—Center for Social and Economic Research, Manuscript, 3 July.