Appendix A

An Inventory of
Continuous Distributions

A1 INTRODUCTION

Descriptions of the models are given starting in Section A.2. First, a few mathematical
preliminaries are presented that indicate how the various quantities can be computed.
The incomplete gamma function' is given by

x
Enhuunﬁ g t°letdt, a>0 z>0,

with [{a) = \.s t*=le~tdt, a>0.
A useful fact is ['(a) = (a = 1)['(a - _ov. Also, define
Glogz) = .\.San_mn.&_ x>0
u.
!Some references, such as [3], denote this integral Pla, =) and define [(a, ) = [ t=~1e~" dt. Note that

this definition does not normalize by dividing by I'(a). When using software to evaluate the incomplete gamima
function, be sure to note how it is defined.
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At times we will need this integral it .
the relationship for nonpositive values of a. Integration by parts produces
; Tte™® 1
Glaszr) = === + NQAQ + 1;x).

.—Eu_...aon%nuaauﬂ?z& . .
it can be evaluated from EEnsmEuﬂcsozoansn+r.uoaa& number. Thep

Gla+kiz) =T(a +k)[1-T(a+ k;z)],
However, if o is a negative integer or zero, the value of G(0; z) is needed. Itis

Go;z) = \.a e dt = By (z),
‘Which is called the exponential integral. A series expansion for this integral is
Ei(z) = —0.577215664001563 — In x — W (=1)nan
& any

S?:D_:Eﬂ.eu_.u _Eo. .
as given in the following _.__Saoouqaa incomplete gamma function can be evaluated exactly

Theorem A.1 For integer o,

a=] .
Plasz) =1 - e
j=1-F 2

J=0

Proof: Fora = | P(liz)= [Fe~tdt=1~e=
v Shrigbet (B = 1=e"%, and so the theorem |
The proof is completed by induction. Assume it is true f nH_..:_._”_”nﬁ_.ﬂ:._unpK.
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The incomplete beta function is given by
Tla+b) [*

Ala,b;x) = TaT0) J, - o R
where
- I(a +b)
Ala,b) TeIT)

B el
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is the beta function, and when b < 0 (but a > 1 + [—b|), repeated integration by parts
produces

I(@)T(B)(a,biz) = ~T(a+0b) ﬁhﬁ
(a = 1)x*=%(1 - r)t+!
YTy T
+?l::_?laaﬁT:_qir:
Bb+ 1) (b r)

(a=1):v(a=r—=1)
blb+1)---(b+r)
x[b+r+1)Bla=r—1b+r+1;2),

+ [la—r—1)

where r is the smallest integer such that b+ + 1 > 0. The first argument must be positive
{thatis,a~=r—1>0).

Numerical approximations for both the incomplete gamma and the incomplete beta func-
tion are available in many statistical computing packages as well as in many spreadsheets
because they are just the distribution functions of the gamma and beta distributions. The
following approximations are taken from [3]. The suggestion regarding using different
formulas for small and large = when evaluating the incomplete gamma function is from
[144], That reference also contains computer subroutines for evaluating these expressions.
In particular, it provides an effective way of evaluating continued fractions.

For < a + 1 use the series expansion

n

%" = 2
Tis)= Ila) ..Mnuabnn.v:.:?+=u

while for x > o <+ 1, use the continued-fraction expansion

e 1
1-T(ajzx) = = v
H.AQV o I-a
s
b & 3
1+

£+

The incomplete gamma function can also be used to produce cumulative probabilities from
the standard normal distribution. Let ®(z) = Pr(Z < z), where Z has the standard
normal distribution, Then, for z > 0, ®(z) = 0.5 + ['(0.5; 22 /2)/2, while for z < 0,
B(z) =1-¥(-z2).

The incomplete beta function can be evaluated by the series expansion

Tla+b)z(1 - z)®
al'(a)l'(b)
= (a+b)la+b+1)(a+b+n) ..
X143 @+1)a+2).(a+nsD) = |’

Bla,bz) =

=t
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The gamma function itself can be found from

InF(a) = ?lﬁsnuntsmi
P TRE: TRV DU BN (N
120 360a? ' 1,260a% 1,680a" @ 1,188a° 360360611
L L3617 43867 174N
156013 12240005 | 244,188a17 125400080

For values of o above 10, the eror is less than 1079, For values below 10, use the
relationship

Inla) = InTa+1) = Ina.

The distributions are presented in the following way. First, the name is given along
with the parameters. Many of the distributions have other names, which are noted in
parentheses, Next the density function f(x) and distribution function F(z) arc given.
For some distributions, formulas for starting values are given. Within each family the
distributions are presented in decreasing order with regard to the number of parameters.
The Greek letters used are selected to be consistent. Any Greek letter that is not used in the
distribution means that that distribution is a special case of one with more parameters but
with the missing parameters set equal to 1. Unless specifically indicated, all parameters
miest be positive.

Except for two distributions, inflation can be recognized by simply inflating the scale
parameter 8. That is, if X has a particular distribution, then c.X has the same distribution
type, with all parameters unchanged except # is changed to cfl. For the lognormal distribu-
tion, u changes to y + In(¢) with & unchanged, while for the inverse Gaussian, both j and
! are multiplied by c.

For several of the distributions, starting values are suggested. They are not necessarily
good estimators, just places from which to start an iterative procedure to maximize the
likelihood or other objective function. These are found by either the methods of moments
or percentile matching. The quantities used are

1l 1o 5
Moments: EIMM”H___ _,IMMH_.

=] =]
Percentile matching: p = 25th percentile, ¢ = 75th percentile.

For grouped data or data that have been truncated or censored, these quantities may
have to be approximated. Because the purpose is to obtain starting values and not a useful
estimate, il is often sufficient 1o just ignore modifications. For three- and four-parameter
distributions, starting values can be obtained by using estimates from a special case, then
making the new parameters equal to 1. An all-purpose starting value rule (for when all else
fails) is to set the scale parameter (@) equal to the mean and set all other parameters equal
w2

Risk measures may be calculated as follows. For VaR,,(X), the value-at-risk, solve the
equation p = F[Var,( X )|. Where there are convenient explicit solutions, they are provided.
For TVaR,,(X), the til-value-at-risk, use the formula

E(X) — E[X A Var,(X)]

TVaR,(X') = Var,(X) + Yoo

Explicit formulas are provided in a few cases.

e

| ——
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All the distributions listed here (and many more) are discussed in great detail in [91], In
many cases, alternatives o maximum likelihood estimators are presented.

A2 TRANSFORMED BETA FAMILY

A2.1 Four-parameter distribution

A.2.1.1 Transformed beta—c,0,v, 7 {generalized beta of the second kind, Pear-
son Type VI?

Ta+7) A=/0)T

1@ = Tar(r) 21 + (/67"

(z/0)"
F(z) = Blr,au), u= ~+HHE._|{
eT(r+k/0a=k/fv)

E(X"] = = _..A.MLEL . —my<k <o,
KA = = ﬂﬁﬁﬁ = %10 g7 + kfrva — ki)
+—FE), k>-m7,

Ty — 1 1/
Mode: = mﬁﬁl. _v oy > 1, else 0.

A.22 Three-parameter distributions
A.2.2.1 Generalized Pareto—o, 6, 7 (beta of the second kind)

Ta+r) 82"}
HAHU - ﬁ.abuﬁpﬂ._ (x + Byt \

Fl@) = Blrou), u= an_
Elx% = £||E -r<k<a,
m_HJ = m_.,_.MH..H ___VIMH.MMM 1) if k is a positive integer,
E{(XAz)] = ».zq_.ﬂ“%w ~ _,.::ﬂ + ko — ki u),
+2*1 - F(o), k>-7.
Mode = mww H_ v> 1,clse.

here is o inverse transformed beta distribution because the reciprocal has the same distribution, with o and 7
interchanged and @ replaced with 1/8.
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A.222 Burr—a,0,~ (Burr Type X11, Singh-Maddala)

) = —oz/ey
- z{1 + (z/6)7]o+1"
Flz) = 1-u®, u= ]
1L+ (z/8)’
VaRy(X) = 8[(1 -p)~Ye — 1)V,
gixy = LP0+E/a—k/y) &
I(a) w THEk<on,
O*T(1 + k /1) (e -
El(X Az)*| = /1)T(a — k/y
: x) _ —J_T.L “_Q:.Tr._‘_q..ﬁql.«nx_a.; - )
4+t ks —y
Mode = of2=LY"”
= .NJ|_.|m v T>1, else0.

A.2.2.3 Inverse Burr—r,0 , v (Dagum)

fla) = IO
o1+ (z/8)Y] 1"

Flz) = o u=E0)

S T+ (@/ey
VaR,(X) = 8(p~ " -1)"1,
E[XY = O*T(r + k/)0(1 — k/v)
\ a I'(r) y —Tr<k<o,
(X Azt = T +k/)r(—k
E[(X Az)4] _,ﬂ.:ﬁ 1) gtr 4 k1 = ki)
I_.r.__lcqu_ k> -1y,
=1\
sl ._..A ++ ._;v v TY> 1, else .

Ay

A.2.3 Two-parameter distributions
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A.2.3.1 Pareto—a, 0 (Pareto Type Il, Lomax)

af”®
1) = GEepe

g \°
Fiz) = tha+mu "

VaR,(X) = #[(1-p)~ 1],
T (k + 1) — k)
ok = e e ——— = k< ¢
E[X"Y = ol , —l<k<a,
E[X'] = i — if k is a positive integer,
(a—=1)--(a-k)
[ g N .
m*.x..)H_ = e _Iﬁ.ﬂ+cv y, a#Fl,
a
E[X Az] = |_Eﬂhh+m__v. g,
_ay-l/a
TVaR,(X) = c%L&Tﬁ.*: as>1,
k(I o
E[(X Ax)'] = m_z__..+_:.__: _C__.:_r+_,c_|r.n&\f+3_
I'a)
+HAHNL . all ks
Mode = 0,
. at—m? . mt
e - Mn.um:_u, 0=
A.2.3.2 Inverse Pareto—r, 0
9zt
fle) = Pyt
z \'
ri = =Y.
VaR,(X) = 6[p~V" =1]"",
BT (7 + k)P(1 — k)
L tad A=A LR -T < K <
BIXY = T , =T<k<l,
6% (~k)! o _
K — .
E[X*] = e if k is a negative integer,
= /{z+8)
E[(XAx)*] = _?\ Lot —y) Ny
o
k T .
A L PO T
+-x T Ah.:_‘__uﬁ T
Mode = m.«wf T > 1, else 0.
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A.2.3.3 Loglogistic—y,8 (Fisk)

Fz/0)" %

(#) = el

fl= z[l + (2/0)

. (z/6)"

Flz) = w, P, = .l /.

o, M= Ty ey

VaRy(X) = @(p~'-1)"1,

E[X* = 6T +k/NTQ—k/v), —v<k<q,

E[(X A x)Y 85 0(1 + k/T(1 — k/4)8(1 + k/4,1 = k/v;u)

+z*(1-u), k>—v,
=1 Ly
Mode = th V s ¥>1, elseD,

T+1
o e 21In(3) In(q) + _:S:V

v TR h 2

A.2.3.4 Paralogistic—, 0 This is a Burr distribution with v = a.

A o (x/8)"
flz) = HIT.THH\EM_EH._.
1
F = 1-u", 5
(=) > =TT (z/8)~
VaR,(X) = #8[(1—p)~t= —1]Y/=,
kT / —k/ "
ElX% - (1 + K D:J.n. »_.....u.... —acEcat
: INa)
y (1 + k/a)T{a — k/a) . ; -
El(X A x)* s/ ,cvrw:.1»...2....|f.5—|.1
: T{a)
+*u®, k> -a,
h a-1 v Ha
Mode = 0| —— , =1, elsel
a* 41

Starting values can use estimates from the loglogistic (use 4 for a) or Pareto (use a)
distributions.
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A.2.3.5 Inverse paralogistic—r,# This is an inverse Burr distribution with y = 7

- ~(z/8)"
fix) = H|...|__ F /O
: B _ B (z/0)T
Fiz) = u", u= O
ViR (X) = 8(p YT -1)7\",
o rir+kfr)T(1 -k )
T o, e D PN FS et eRoT
E[X"] Tr)
k1 ; —k
o OTrAYnTQA - k) gy 4 kyra
I'(r)
+af1—u"], k>-7%,
Mode = O(r—1Y", 731, else0.

Starting values can use estimates from the loglogistic (use for 7) or inverse Pareto (use
7) distributions,
A.3 TRANSFORMED GAMMA FAMILY

A.3.1 Three-parameter distributions
A.3.1.1 Transformed gamma—a, 0,7 (gencralized gamma)

f(z) u=(z/0),

F(z) =

B[X*] = . k>-—ar
E(XAz)] = |..l.:1_“:+r.,a.._:
i a) '

) +Hx: —Da;u)}, k>-ar,
Mode = mﬁﬁv , o7 >1,elsel.
T
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A.3.1.2 Inverse transformed gamma—a, 0,7 (inverse generalized gamma)

=

fo) = S w=/2r,
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A.3.2.2 Inverse gamma—x, 6 (Vinci)

(/2"

. 1@ = e !
Flz) = 1—-T(a;u),
H.ﬁu m_ﬁhanﬂi F(z) = 1-T(e;8/z),
E[X¥ = @ k< ar, XY = mwﬁ%nli_ k<a,
B(X Az = SL@—KT)y_ e kym *D(a; Ea
(X Az)] = T(a) [1=D(a = k/mu)] + 2 *T{a;u) EXY = ]ﬂ]ﬂl'rw if k is a positive integer,
- F*Gla—k/riu) i, ar= e
= Ia] + z*[(a;u), allk, E[(X A oM = mrﬂ_.mm.m.ﬂ k) [t —Tla— ki8/)] 4+ 28T (es 0/ )
o 1fr A rd
Mode = @ Aai _v : _ n?ﬂn_w_ 12) 4 *D(a;6)), all k,
Mode = 6/(a+1),
. 2t - .:.“u @ i mt
A.3.2 Two-parameter distributions & = g VT ie-mt

A.3.2.1 Gamma—x, 0 (Whena =n/2and#é = 2, itis achi-square distribution with
n degrees of freedom.)

A.3.2.3 Weibull—0, T

Aﬁxmunmlu;

) = HH.AQV k .—.aH\qum\nh_.__B_.
Flz) = T(a;2/8), flz) = = )
0¥ (e + k) Flz) = 1-e&®
ElXY = ———, k>-aqa, (=) '
& I(a) - VaR,(X) = O[-In(1- P,
E[X*¥] = #%a+k—1):--a ifkisa positive integer, ElXY = PT(1+ k/T), k>-T,
L Y & ? kmlﬁu‘__mu._ > =T,
E[(X ..)Huw_ = %H)HQ +kiz/0) + H_w—_. —T(agz/®)], k> —a, mﬁwﬁ A va,_ = __‘..wﬂ: + k\w._-____uﬂ: + ?\.ﬂ;n\mu _ ..T T B T
N T
E(XAz)*] = ala+1)-{a+k—1)8T(a+kz/0) Mode = 0 ﬁa = u v 7>, else,
+2*[1 = T(a;¢/0)] if k is a positive integer, . qln(p) — In(q) _In(In(4))
M) = (1-66)* t<1/8, % = eaﬁ a-1 u 97 In(in(473))”
Mode = fla—1), o>1,else ___In(ln(4))
B e P R . 7T g - @) -
t —m?2’ m

=,
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A324 ggr.ﬂ n_owaﬁw.uﬂ-ﬁﬂ.ﬁu

f(z)
F(x)

VaR,(X)
E[X*]
E[(X A z)¥

Mode

-

{0/z)Te—#/5)"

. S
mlﬂn\n_..
8(—Inp)=1/",
O*T(1-k/7), k<,
O*T(1 — k/r){1 —T[1 - k/7; (8/2)7))
42t [1- etrer],

OG(L ~ k/r; (B/2)"] +* [1 - @), g,

T 1/r
¢ Aﬂ + Hv .
gIn(q) - In(p) _ In(ln(4))
seﬁ g-1 v = In(in(a/3))’
In(In(4))
In(f) — In(p)”

A.3.3 One-parameter distributions
A.3.3.1 Exponential—o

E[X*)

E[X Az]
TVaR,(X)
E[(X Az)Y]
E[(X Az)Y)
M(t)

Mode

]

flz) = m.mn_
Flz) = 1-e%/
VaR,(X) = —@In(1-p),

E[X¥ = *T(k+1), k>-1

#%k! if k is a positive integer,

01— e=*/%),

—fIn(1-p)+8,

*T(k + )0 (k + 1:2/6) + o A S
O*KID(k + 1;2/60) + 2%¢~*/* ifk > —1isan integer,
(1-68)-', t<1/e,

0,

m.

< A
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A.3.3.2 Inverse exponential—8

-8fx
@) =
Flz) = e™¥=
VaR,(X) = 6(-lnp)~",
EX* = ér(-k), k<l,
E[(X Az)Y] = 6G(1 —k;0/z)+2"(1 —e7%=), allk,
Mode = 8/2,
6 = —qin(3/4).

A.4 DISTRIBUTIONS FOR LARGE LOSSES

The general form of most of these distribution has probability starting or ending at an
arbitrary location. The versions presented here all use zero for that point. The distribution
can always be shifted to start or end elsewhere.

A.4.1 Extreme value distributions
A.4.1.1 Gumbel—, i (u can be negative)

flz) =
Flz) =

VaR,(X) =
M) =
EX] =

Var(X) =

WméTamuvT exp(—y)}, y= mha.h. -0 < T < 00,
exp = exp (—y)],

o+ 8= In(=1np)],

e"T(1-01), t <1/8,

4 + 0.577215664901530,

a.uau

6

A.4.1.2 Frechet—a,# This is the inverse Weibull distribution of Section A.3.2.4.

VaR,(X)
E[X¥]
E[(X Az)¥]

flx) = Qinﬂ&mvrnal_nuzun

X
m‘AN- > nl_._u._.Sln.

8(=Inp)'/,
*r(1 —k/a), k<a,
6°T(1 — k/a){1 - T[1 - k/ac (/8) "]}

szt 1 nu?.a.-.._ L

= 6*G[1 - k/a; (z/0)°] +* T = N-E:-_._ . allk.
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A4.1.3 Welbull—a, 0

L a,~(—2/0)"
o) = ~HHIPTTT g
F(z) = ¢ =/ p<o,
E[X¥] = (=1)**T(1+k/a), k> —a, kaninteger,
e
Mods = éﬁnlmu . a>1, esed.

A.4.2 Generalized Pareto distributions

A4.2.1 Generalized Pareto—,0 This is the Pareto distribution of Section A.2.3.1
with o replaced by 1/ and # replaced by af..

F(z)=1- A—+4WV|-3 ,y220.

A.4.2.2 Exponential—) This is the same as the exponential distribution of Section
A.3.3.1 and is the limiting case of the above distribution as y — 0.

A4.2.3 Pareto—y,8 Thisisthesingle-parameter Pareto distribution of Section A.5.1 4.

From the above distribution, shift the probability to start at 6.

A.4.24 Beta—c,f This is the beta distribution of Section A.6.1.2 witha = 1.

A.5 OTHER DISTRIBUTIONS

A.5.1.1 Lognormal—j,a (u can be negative)

1

fle) = exp(~2/2) = #(2)(0z), == DEE
zov2x o
F(ir) = ®(z),
ElX* = nxﬂﬁ»r+wwpq»v.
- - 2
E[(XA2)f] = exp ElmqfﬁEu + 241 - F(z),

Mode = exp(p—a?),

aF =

Vin(f) —2in(m), = In(m) - }&*.

“This is not the same Weibull distribution as in Section A3.2.3. It s the negative of a Weibull di
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A.5.1.2 Inverse Gaussian—i, 0

ElX] = u VarlX]=n'/0,

k-1 k
k+n—1)! " =
M—M-_ — M ﬁ w k=120
n=0

(k—n—1)mi (28"

E[XAz] = z—pzb T hmv:u‘_ ~ pyexp(26/p)® ﬁlc Amvr_ua J

) 2 LA
mﬂuﬂmhul qun w _Autu.

- 9 m
B o= m %"nlﬂau.

=
=
C
I

istribution with 7 degrees
A.5.1.3 logt—r, p, o (ucan be negative) Let Y have o t E or
of freedom. Then X exp(e + p) has the log-t distribution. Positive moments do
not exist for this distribution. hgﬂnlh%mggagm&g&né
distribution, this distribution has a heavier tail than the lognormal distribution.

()

flz) = ) 2"
nz — p
v (5) o4 (25
Fiz) = F A_.,TJ with F (1) the cdf of a t distribution with r df,
a
m.m Mw.ll_.|||m . D<z<er,
2" 12"2’ h.:nltv
r+
o
F(z) =
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A5.1.4 Single-parameter Pareto—a, 6 A6.1.2 beta—a, b, Thecasef =1 has no special name, butis the commonly used

version of this distribution.
Pa+b) oy _ -1t 0<r<o, u=z/6,
1) = Farmt oY #
e Flz) = Blabiu),
= =, 8,
flz) e Hv o #T@@+hla+k)
F(z) = _-AMV_ E50 BXY = Fojf(a+o+® ' o
f*ala+1)-+-(a+ k- if k is a positive integer,
VaR,(X) = o(1-p)~"/e, ExY = Gtbarbot1)(at+tb+rk-1) ' s
K = at* #afa+1)---la+k-1) 3 Kb
= oo e E[(XAx) = ?+3?+e+:,:?+a+_ﬂ|:___a+ g
E(X Az)¥] = hﬁl»l »?..L..swm_ +2¥1 = Bla, biu)l,
a—k (a—kj . . P ) mlﬁ?:lcna|5._.
TviR(x) = ATy @ = Fgm ' Gi-om?
Mode = @, ’
4= M
= —

Note: Although there appear to be two parameters, only o is a true parameter. The value
of f must be set in advance.

A6 DISTRIBUTIONS WITH FINITE SUPPORT

For these two distributions, the scale parameter 6 is assumed known.

A.6.1.1 Generalized beta—a,b,0, T

flz) = M_anﬂﬁww u®(1 = u)*! m 0<xr<8, u=(z/0),
F(x) = pla,bu),
6 T{a+b)l(a+k/7)
BXY = Teiatieie: ™
E[(XAz)¥] = %m? + k/7,byu) + z*[1 — Bla, b;u)).

[T




Appendix B

An Inventory of
Discrete Distributions

B.1 INTRODUCTION

The 16 models presented in this appendix fall into three classes. The divisions are based
on the algorithm by which the probabilities are computed. For some of the more familiar
distributions these formulas will look different from the ones you may have learned, but they
produce the same probabilities, After cach name, the parameters are given, All parameters
are positive unless otherwise indicated. In all cases, px is the probability of observing k
losses.

For finding moments, the most convenient form is to give the factorial moments. The
jth factorial moment is p(;y = E[N(N — 1)+ (N — 7 + 1)]. We have E[N] = j(;) and
Var(N) = iy + gy = iy

The estimators presented are not intended to be useful estimators but, rather, provide
starting values for maximizing the likelihood (or other) function. For determining starting
values, the following quantities are used (where ny, is the observed frequency at k [if, for the
last entry, ny represents the number of observations at k or more, assume it was at exactly
k] and n is the sample size):

Loss Models: From Data to Decisions, 3rd. ed. 683
By Stuart A. Klugman, Harry H. Panjer, Gordon E. Willmot
Copyright (€ 2008 John Wiley & Sons, Inc.
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mmu o [

A== "kny, ==Y Kn.- @

=1 :m j

When the method of moments is used to determine the starti i A
) e starting value, a circumflex (e.g,

is used. For any other method, a tilde (e.g.. A) is used. When the starting value mo:.“u-um_n.”
_._2g%é*éc&ﬁné«%hﬁﬁﬁﬁ?!&ﬁoqa;
im?ﬂ:ﬁgéaﬁéwsﬁﬁiﬂ_z_%gﬂﬁ_s_;ng
En?.u»Emg.ﬁﬁwgw.aﬁoﬂus.ﬁgﬂg%nﬂg!n
mean. -

The last item presented is the probability generating function,
P(z) = E[z"].

' B2 THE (a,b,0) CLASS

The distributions in this class have support on 0, 1 For this class, a parti i

The ¢ u i t ey =g . @ particular distribuy-
tion is ._von_no.ﬂ_ by setting py and then using p; = (a + b/k)pk—1. Specific members are
created by setting py, a, and b, For any member, Hpyy = (a+b)/(1 - a), and for higher j
#(5) = (a3 + b)iags-1)/(1 ~ a). The variance is (a + b)/(1 — a)?. .

B.2.1.1 Poisson—\

P = e a=0 b=),
m:»yw
b = K (]
E[N] = A, Var[N] =),
A= 5
P(z) = -1,
B.2.1.2 Geometric—3
= =i _ B
b= 8 ““iza =0
. g
T
EIN] = 4, ValN]=5(1+5),
B = I
P(z) = [1-pg(z-1)

“This is a special case of the negative binomial with r = 1.
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B.2.1.3 Binomial—q, m, (0 < g < |, m an integer)

+1
o = [ nﬁl_ﬁmﬂ_. ,..n?“ ..o_.._.
P = Aﬂva_;.T&a#, k=0,1...,m,
E[N] = mgq, Var|N]=mq(l-q),
ﬂ. = jifm,
P(z) = [14q(z-1)]™
B.2.1.4 Negative binomial—3. r
o 8 —1p
R =

rir+1)---(r+k—1)8*

Pk =

_-n_: +_m1.+w
EN] = 13, Var[N]=r8(1+5),
’ 7 i
B = M:r F=zm
Plz) = N1-8(z-1)]".

B.3 THE (a,b,1) CLASS

To distinguish this class from the (a, b, 0) class, the probabilities are denoted Pr(N = k) =
pM or PN = k) = pl depending on which subclass is being represented. For this
class, p is arbitrary (i.e., it is a parameter), and then p{’ or p{ is a specified function
of the parameters a and b. Subsequent probabilities are obtained recursively as in the
(a,b,0) class: ppf = (a + b/k)pp |, k = 2,3, ..., with the same recursion for p There
are two subclasses of this class. When discussing their members, we often refer to the
“corresponding” member of the (a, b, 0) class. This refers to the member of that class with
the same values for a and b. The notation py will continue to be used for probabilities for
the corresponding (a, b,0) distribution.

B.3.1 The zero-truncated subclass

The members of this class have p] = 0, and therefore it need not be estimated. These
distributions should only be used when a value of zero is impossible. The first factorial
moment is i3y = (a + b)/[(1 — a)(1 = po)]. where py is the value for the corresponding
member of the (a, b, 0) class. For the logarithmic distribution { which has no corresponding
member), pi(y) = 3/In(1+ ). Higher factorial moments are obtained recursively with the
same formula as withthe (a, b, 0) class, The variance is (a+b)[1—(a+b+1)pp)/|(1—-a)(1 -
E__u. For those members of the subclass that have corresponding (a, b, 0) distributions,
Pl =pa/(1 = po).
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B.3.1.1 Zero-truncated Poisson—)

o= n‘,._,l__ =0, b=A,
T _ A*
P = %‘ﬂfl_.v_
m_E._ = Afl—e?), Var[N] = A[l = (A + Cm\»_\ﬁ — N2,
A = In(ng/n,), 5
M
P = 51

B.3.1.2 Zero-truncated geometric—3

T _ 1 8

n = _|4.r|m: nua. b=0,
T .hw_*lu

B = ﬁfl_+.3w.

BIN] = 148, Var|N]=g(1+p),
g = a-1,

Py = BofEol -4

1-(1+8)-1 _

This is a special case of the zero-truncated negative binomial with + = 1,

B.3.1.3 Logarithmic—g3

I g _ B 8
T TeAmaEa CTTep T TEp
P = 2
k(1+3)*In(1 + 8)'
EIN| = B/In(1+8), Varn)=BlLt8—5/W(1+0)]
) in(1 + ) ,
G oo M, o -
L I }
Py = 1 lml=Be-1)
m(1+7

This is a limiting case of the zero-truncated negative binomial as r — 0.

ﬁ .
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B.3.1.4 Zero-truncated binomial—q,m, (0 < ¢ < 1, m an integer)

Ty D .
o= £ k=1,2,...,m,

E[N] = %.

Var[N] = mal(1 — nu__\mﬁcina Mwﬂmv: —a™
i = L

Pl = Qgpedlt—0egh

==
B.3.1.5 Zero-truncated negative binomial—3,r, (r > —1,r # 0)

r . ™ __ 8 ol ).
RS Tepm-a+n CTiep 'T 158
- %+::.:+T:A ] vt
Pe = TTHHAT -7 1+8) °
rd
BN = -
BB -1+ G +rA(1+ 87
Var[N] = 1-(1+8)- i
5 . 4t oo P
b=5"t"=ayp
_ R-BE-UT-(+8)
Fep = —Q+p— :

This distribution is sometimes called the extended truncated negative binomial distribu-
tion because the parameter r can extend below 0.

B.3.2 The zero-modified subclass

A zero-modified distribution is created by starting with a truncated distribution and then
placing an arbitrary amount of probability at zero. This probability, pj’, is a parameter. The
remaining probabilities are adjusted accordingly. Values of E..: can be determined from the
corresponding zero-truncated distribution as p)f = (1 — pf*)pl or from the corresponding
(a,b,0) distribution as p}' = (1 — p})px/(1 — pa). The same recursion used for the
zero-truncated subclass applies.

The mean is 1—p2* times the mean for the corresponding zero-truncated distribution. The
variance is 1—p}! times the zero-truncated variance plus pj’ (1—p ) times the square of the
zero-truncated mean, The probability generating functionis P (z) = pM 4 (1-pl ) P(2),
where P(z) is the probability generating function for the corresponding zero-truncated
distribution.

The maximum likelihood estimator of p* is always the sample relative frequency at 0.
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B.4 THE COMPOUND CLASS

Members of this class are obtained by compounding one distribution with another. That
is, let N be a discrete distribution, called the primary distribution, and let My, My, . . . be
Li.d. with another discrete distribution, called the secondary distribution. The compound
distribution is § = M, + - - - + M. The probabilities for the compound distributions are
found from

1

T 1-afo

forn = 1,2,..., where a and b are the usual values for the primary distribution (which
must be & member of the (a, 4,0) class) and f, is p, for the secondary distribution. The
only two primary distributions used here are Poisson (for which py = exp[-A(1 — folD)
and geometric (for which py = 1/[1 + 8 — 3fa]). Because this information completely
describes these distributions, only the names and starting values are given in the following
subsections.

The moments can be found from the moments of the individual distributions:

E|S] =E[N|E[M] and Var|S] = E[N] Var[M] + Var[N]E[M]?.
The pgfis P(z) = Pyrimary [ Precondary (2)]-

In the following list, the primary distribution is always named first, For the first, second,
and fourth distributions, the secondary distribution is the (a, b, 0) class member with that

[
an + g\#v.‘.—qﬂ.rrt

Pk

name. For the third and the last three distributions (the Poisson-ETNB and its two special

cases), the secondary distribution is the zero-truncated version,

B.4.1 Some compound distributions
B.4.1.1 Poisson-binomial—X\,q,m, (0 < g < |, m an integer)

N

i A= or mna.m.wumm.

m=-1" mg m

B.4.1.2 Poisson-Poisson—A;,A; The parameter A; is for the primary Poisson
distribution, and g is for the secondary Poisson distribution. This distribution is also
called the Neyman Type A.

M= Ag =V
B.4.1.3 Geometric-extended truncated negative binomial—g;, 3;,v (r >
—1) The parameter 3, is for the primary geometric distribution. The last two parameters

are for the secondary distribution, noting that for » = 0, the secondary distribution is
logarithmic. The truncated version is used so that the extension of r is available.

__.w_ = -mu = r\_m
B.4.1.4 Geometric-Poisson—3, A
B = VE

o
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E sson-extended truncated negative binomial— )
N..W.__Aﬂ Vtulup_ r#0) Whenr = 0the secondary distribution is logarithmic, resulting
in the negative binomial distribution.

(K - 36% + 2) = 2(6% — i)? b= a* . 3
i(K — 36 ) — (6% — @)? "’ a(1 +7) i3
(K — 387 + 20) — (3% - f1) (1 +7)

or,

-6 5. B

#*nyfn — fi*no/n

r = (a2 - @) (no/n) In(na/n) — R_‘.Ec.\‘:l__:x...._u_
;s &= =z B
unm:i:, y;&

&= 1 :
o ! M K3y — 3ji— M K+ 2%,
n n
k=0 k=0

This distribution is also called the generalized Poisson—Pascal.

B.4.1.6 Polya-Aeppli—A, 3

P e (I fi
oy . A = m——,
P==5 =143
This is a special case of the Poisson-extended truncated negative binomial with r = L.
Tt is actually a Poisson—truncated geometric.

B.4.1.7 Poisson—inverse Gaussian—2\, 3

)
—

= —In(ng/n), B=

This is o special case of the Poisson—extended truncated negative binomial
with r = —=0.5.
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Table B.1 Hierarchy of discrete distributions.

Distribution

Is a special case of Is a limiting case of
Poisson-binomial,
Poisson-inv. Gaussjan,
Polya-Aeppli,
. Neyman-A
Mﬂnﬂo“““.a ZM Poisson wﬂnﬁﬁ binomial
negative binomi
Geometric Negative binomial Qni:h:n%i”“uﬂ .
. ZM geometric
ZT geometric ZT negative binomial
™ geomelric ZM negative binomial
ZM logarithmic % s vFa..uHin:J
Miog negative binomi
NEEM_LE . ZM binomial o
egative binomi ZM negative binomial i
iy ; - a Poisson-ETNB
ﬂn“wnl.»nv_.: Poisson-ETNB
eyman-A Poisson-ETNB

B.5 A HIERARCHY OF DISCRETE DISTRIBUTIONS

.?v_m B.1 indicates which distributions are special or limiting cases of others. For the
u.vam«,a cases, one parameter is set equal to a constant to create the special case. For the
limiting cases, two parameters £0 to infinity or zero in some special way.

b |

Appendix C

Frequency and Severity
Relationships

Let NE be the number of losses random variable and let X be the severity random variable.
If there is a deductible of d imposed, there are two ways to modify X. One is to create V' ©,
the amount paid per loss:

vE = .ﬁ 0, X <d,
X:n.kve_.

In this case, the appropriate frequency distribution continues to be N-.
An alternative approach is to create Y7, the amount paid per payment:

vP - undefined, X <d,
Tl X-=d, X>d

In this case, the frequency random variable must be altered to reflect the number of payments.
Let this variable be N *, Assume that for each loss the probability isv = 1 — Fy(d) thata
payment will result. Further assume that the incidence of making a payment is independent
of the number of losses, Then N7 = Ly + Ly 4 - -+ + Ly, where L, is 0 with probability
I — v and is | with probability v. Probability generating functions yield the relationships
in Table C.1.
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NE Parameters for N*°
Poisson A" =upA
M A —wd =wh
ZM Poisson P e H..unuylna..m y AT =gl
Binotmial Q" =ug
M ™ = m M m
_— ae _ PO — (1 =)™ +(1—vg)™ — p5"(1 ~ vg)
ZM binomial o = g s
N =
Negative binomial fr=vf r=r
e so _ W =148+ +vf) " —p' (1 +v8)”"
ZM neg. binomial P = T— 0"
B = r=r
ZM logarithmic P =1~ (1-p})n(1 +v8)/ In(1 + B)
g =vf

The geometric distribution is not presented as it is a special case of the negative bi-
nomial with r = 1. For zero-truncated distributions, the same formulas are still used as
the distribution for N will now be zero modified. For compound distributions, modify
only the secondary distribution. For ETNB, secondary distributions the parameter for the:
primary distribution is multiplied by 1 - p}'* as obtained in Table C. 1, while the secondary
distribution remains zero truncated (however, 3 = v3).

There are occasions in which frequency data are collected that provide a model for N7,
There would have to have been a deductible d in place and therefore v is available. It is
possible to recover the distribution for N, although there is no guarantee that reversing
the process will produce a legitimate probability distribution. The solutions are the same
as in Table C.1, only now v = 1/[1 = Fy(d)].

Now suppose the current frequency model is N, which is appropriate for a deductible
of d. Also suppose the deductible is to be changed to d*. The new frequency for payments
is N9 and is of the same type. Then use Table C.1 with v = [1 — Fx (d*)]/[1 = Fx(d)].

Appendix D
The Recursive Formula

The recursive formula is (where the frequency distribution is a member of the (a, b, 1) class),

A

oy~ (a+ Blpol () + 2 (a+ %) Sxtwfs(z—v)
&
i = a/x :

= s = 2).z=0,1,2:... Ixlz) =Pr{X =2),2=0,12,...,
MKH “Mﬁhvﬂ ow.q”“a n wd Pr(N = 1). Note that the Rﬁne._.. &mﬁwnmoa (X) must
place probability on nonnegative integers. The formula must be m_...____.,.*wﬂ,_Ai___._ the é_.s_‘
of fs(0). These values are given in Table D.1. It should be :o_nn_ Ew... if N isa Bnﬂwﬂv”
the (a, b, 0) class, py — (a + b)po.= 0, and so the mn_z term will vanish. If NV is a member
of the compound class, the recursion must be run twice. The first pass uses the secondary
distribution for py, p1. a, and b. The second pass uscs the output from the first pass as
fx () and uses the primary distribution for po, p1, &, and b,
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Table D.1 Starting values (f5(0)) for recursions.

Distribution fs(0)

Poisson mﬁlﬁ? _ C_

Geometric L+ B(1 = fo)]™*

Bigouldl [1+¢(fo—1)"

Negative binomial 145801 - .».uzl_..

ZM Poisson um._+:|v%u$m|ull.ﬂw

ZM binomial bt 4 (1 — ity Lt aUfo = VI — (1 - g)"
1-(1—qg)

ZM negative binomial P4 (1-p) b+ E_HIIH.M.W_H.QM:AW +8)7"

ZM logarithmic M 4 (1 —pb) T 5 _n_w_“.ﬁ_wwm Mu?: w




Appendix E
Discretization of the
Severity Distribution

seretize the severity distribution. One is the
preserving me

E.1 THE METHOD OF ROUNDING

This method has two features: All pre
Let /i be the

168 are po

d the p
and let Y be the discretized version of X . If there

STRIBUTION

discretiz

) . change al
and also change the numerator of gr, —ay/p 10 Fx(u)

E.2 MEAN PRESERVING

This m

e mean as the ong
severity distr

For the m

h[Fx(u) = Fx{d)|

and subtract h|l — Fx (u)] irs of

h of

d gy

Assume we have gy = Pr(5

ih), where §* is a discretized distnnbution a e span. The



ISEG
Risk theory

Formulary

Compound distributions

S - aggregate claims
N
S=> X
i=0

where {Xi}i:1727,_. are i.i.d. random variables and independent of N.

Mg(r) = My(log Mx(r))
E(S) = E(N)E(X),
V(S) = BE(N)V(X) + V(N)E*(X)
and

1131S) = 15[ N EP[X] + 3Var[N]E[X]Var[X] + E[N]5(X).

NP approximation
Let Fs(x) be the distribution function of S and let Fz(z) be the distribution function of

Z = (S - ps)/os.

Then

Fy (z + %(zz - 1)) ~ O(z),

which is equivalent to






